向量指的是

[  ]

A.只有大小的量

B.只有方向的量

C.既有大小又有方向的量

D.有大小或有方向的量

答案:C
提示:

根據(jù)向量的定義.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義平面向量之間的一種運算“*”如下:對任意的
a
=(m,n),
b
=(p,q)
,令
a
*
b
=mq-np
.給出以下四個命題:(1)若
a
b
共線,則
a
*
b
=0
;(2)
a
*
b
=
b
*
a
;(3)對任意的λ∈R,有
a
)*
b
=λ(
a
*
b
)
(4)(
a
*
b
)2+(
a
b
)2=|
a
|2•|
b
|2
.(注:這里
a
b
a
b
的數(shù)量積)則其中所有真命題的序號是( 。
A、(1)(2)(3)
B、(2)(3)(4)
C、(1)(3)(4)
D、(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義域為[x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個端點分別為A、B,點O為坐標(biāo)原點,點M是C上任意一點,向量
OA
=(x1,y1),
OB
=(x2,y2),
OM
=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量
ON
OA
+(1-λ)
OB
,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指|
MN
|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:①A、B、N三點共線;②“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”; ③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)
5
4
下線性近似”. 其中所有正確結(jié)論的序號為(  )
A、①、②B、②、③
C、①、③D、①、②、③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐匯區(qū)一模 題型:單選題

定義平面向量之間的一種運算“*”如下:對任意的
a
=(m,n),
b
=(p,q)
,令
a
*
b
=mq-np
.給出以下四個命題:(1)若
a
b
共線,則
a
*
b
=0
;(2)
a
*
b
=
b
*
a
;(3)對任意的λ∈R,有
a
)*
b
=λ(
a
*
b
)
(4)(
a
*
b
)2+(
a
b
)2=|
a
|2•|
b
|2
.(注:這里
a
b
a
b
的數(shù)量積)則其中所有真命題的序號是(  )
A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)定義域為[x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個端點分別為A、B,點O為坐標(biāo)原點,點M是C上任意一點,向量
OA
=(x1,y1),
OB
=(x2,y2),
OM
=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量
ON
OA
+(1-λ)
OB
,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指|
MN
|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:①A、B、N三點共線;②“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”; ③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)
5
4
下線性近似”. 其中所有正確結(jié)論的序號為( 。
A.①、②B.②、③C.①、③D.①、②、③

查看答案和解析>>

同步練習(xí)冊答案