A. | x0<a | B. | x0>b | C. | x0<c | D. | x0>c |
分析 確定函數(shù)為減函數(shù),進而可得f(a)、f(b)、f(c)中一項為負的、兩項為正的;或者三項都是負的,分類討論分別求得可能成立選項,從而得到答案
解答 解:∵f(x)=($\frac{1}{2}$)x-log2x在(0,+∞)上是減函數(shù),0<a<b<c,且 f(a)f(b)f(c)<0,
∴f(a)、f(b)、f(c)中一項為負的、兩項為正的;或者三項都是負的.
即f(c)<0,0<f(b)<f(a);或f(a)<f(b)<f(c)<0.
由于實數(shù)x0是函數(shù)y=f(x)的一個零點,
當f(c)<0,0<f(b)<f(a)時,b<x0<c,此時B,C成立.
當f(a)<f(b)<f(c)<0時,x0<a,此時A成立.
綜上可得,D不可能成立,
故選:D
點評 本題主要考查函數(shù)的零點的定義,判斷函數(shù)的零點所在的區(qū)間的方法,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com