求函數(shù)f(x)=數(shù)學(xué)公式在x∈[0,1]上的最大值和最小值.

解:由于f(x)=++ 在[0,1]上是減函數(shù),
故當(dāng)x=0時(shí),函數(shù)取得最大值為f(0)=3;
當(dāng)x=1時(shí),函數(shù)取得最小值為f(1)=
分析:由于f(x)=++ 在[0,1]上是減函數(shù),從而求得函數(shù)[0,1]上的最大值和最小值.
點(diǎn)評(píng):本題主要考查指數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱(chēng)函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)若f(x)=cosx,x∈[0,π],試寫(xiě)出f1(x),f2(x)的表達(dá)式;
(2)已知函數(shù)f(x)=x2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對(duì)應(yīng)的k;如果不是,請(qǐng)說(shuō)明理由;
(3)已知b>0,函數(shù)f(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)g(x)=2x+
1
x
,x∈[
1
4
,4].
(1)求g(x)的單調(diào)區(qū)間;(簡(jiǎn)單說(shuō)明理由,不必嚴(yán)格證明)
(2)證明g(x)的最小值為g(
2
2
);
(3)設(shè)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=sinx,x∈[-
π
2
π
2
],則f1(x)=-1,x∈[-
π
2
,
π
2
],f2(x)=sinx,x∈[-
π
2
,
π
2
],設(shè)φ(x)=
g(x)+g(2x)
2
+
|g(x)-g(2x)|
2
,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求函數(shù)f(x)=ex在x=0處的切線方程.
(2)x∈R,證明不等式ex≥x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2-(k2+k+1)x+15,g(x)=k2x-k,其中k∈R.
(1)設(shè)p(x)=f(x)+g(x),若p(x)在(1,4)上有零點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)q(x)=
g(x)x≥0
f(x)x<0
是否存在實(shí)數(shù)k,對(duì)任意給定的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x2≠x1),使得q(x2)=q(x1)?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax+a(a∈R,x>0)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若f(x)≤0在x∈(0,+∞)上恒成立.
(i) 求a的取值范圍;
(ii) 設(shè)n為給定不小于4的正整數(shù),當(dāng)m>n時(shí),求證:
n
k=1
f(m)-f(k)
m-k
<-
n
n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案