在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2cos(B-C)=4sinB•sinC-1.
(1)求A;
(2)若a=3,sin=,求b.
【答案】分析:(1)由已知利用兩角和的余弦公式展開整理,cos(B+C)=-.可求B+C,進(jìn)而可求A
(2)由sin,可求cos=,代入sinB=2sincos可求B,然后由正弦定理,可求b
解答:解:(1)由2cos(B-C)=4sinBsinC-1 得,
2(cosBcosC+sinBsinC)-4sinBsinC=-1,即2(cosBcosC-sinBsinC)=-1.
從而2cos(B+C)=-1,得cos(B+C)=-.    …4分
∵0<B+C<π
∴B+C=,故A=.    …6分
(2)由題意可得,0<B<π

由sin,得cos=,
∴sinB=2sincos=.    …10分
由正弦定理可得,∴,
解得b=.    …12分.
點(diǎn)評(píng):本題主要考查了兩角和三角公式的應(yīng)用,由余弦值求解角,同角基本關(guān)系、二倍角公式、正弦定理的應(yīng)用等公式綜合應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長(zhǎng)為20cm,求此三角形的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2

③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來的2倍.
(1)求f(x)的周期和對(duì)稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案