若f(x)=4x-2x+1+2(x≤0)的值域是________.

[1,2)
分析:令t=2x(0<t≤1),g(t)=t2-2t+2,通過(guò)配方法可求得函數(shù)f(x)=4x-2x+1+2的值域.
解答:∵f(x)=4x-2x+1+2(x≤0),
∴令t=2x(0<t≤1),
則g(t)=t2-2t+2=(t-1)2+1(0<t≤1),
∴函數(shù)f(x)=4x-2x+1+2的值域?yàn)閇1,2)
故答案為[1,2)
點(diǎn)評(píng):本題考查二次函數(shù)的性質(zhì),著重考查換元法,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(ax2+bx+c)e-x(a≠0)的圖象過(guò)點(diǎn)(0,-2),且在該點(diǎn)的切線方程為4x-y-2=0.
(Ⅰ)若f(x)在[2,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)F(x)=f(x)-m恰好有一個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4x-2•2x+1-6,其中x∈[0,3].
(1)求函數(shù)f(x)的最大值和最小值;
(2)若實(shí)數(shù)a滿足:f(x)-a≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=e2x-2ax-2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(2x-k)f(x)+4x+2>0,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=4x-2x+1+2(x≤0)的值域是
[1,2)
[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在(1,+∞)上的函數(shù)f(x)=
1
a
-
1
x-1
(a>0)
(1)若f(2t-3)>f(4-t),求實(shí)數(shù)t的取值范圍;
(2)若f(x)≤4x對(duì)(1,+∞)上的任意x都成立,求實(shí)數(shù)a的取值范圍;
(3)若f(x)在定義域[m,n](m>1)上的值域是[m,n](m≠n),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案