如圖,在ABC中,C=90°,AC=b, BC=a, P為三角形內(nèi)的一點(diǎn),且,
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系求出P的坐標(biāo);
(Ⅱ)求證:│PA│2+│PB│2=5│PC│2
(Ⅲ)若a+2b=2,求以PA,PB,PC分別為直徑的三個圓的面積之和的最小值,并求出此時的b值.
以邊CA、CB所在直線分別為x軸、y軸建立直角坐標(biāo)系,,設(shè)A()、B(0,b),P點(diǎn)的坐標(biāo)為(x,y),由條件可知=,可求出x=,y=b,再分別用兩點(diǎn)距離公式即可,(3)將a=2-2b代入s的表達(dá)式,得到b的一個二次函數(shù).
當(dāng)b=0.8時,s最小.
【解析】本試題主要是考查了建立直角坐標(biāo)系來表示面積,得到二次函數(shù)的最值的問題。
根據(jù)已知條件先以邊CA、CB所在直線分別為x軸、y軸建立直角坐標(biāo)系,,設(shè)A()、B(0,b),P點(diǎn)的坐標(biāo)為(x,y),由條件可知=,可求出x=,y=b,再運(yùn)用兩點(diǎn)距離公式得到關(guān)于b的表達(dá)式,進(jìn)而得到面積的最小值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
7 | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
5 | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com