14.公安部新修訂的《機動車登記規(guī)定》正式實施后,小型汽車的號牌已經(jīng)可以采用“自主編排”的方式進行編排,某人欲選由A,B,C,D,E中的兩個字母,和1,2,3,4,5中的三個不同數(shù)字(三個數(shù)字都相鄰)組成一個號牌,則他選擇號牌的方法種數(shù)為3600.

分析 先選字母,有C52種方法,再選3個數(shù)字,有C53種方法,把三個數(shù)字看做一個整體進行排列有A33種方法,再把3個數(shù)字做成的一個整體和2個字母進行全排列,有A33種方法,再根據(jù)分步計數(shù)原理運算求得結(jié)果.

解答 解:先選字母,有C52=10種方法,再選3個數(shù)字,有C53=10種方法,
把三個數(shù)字看做一個整體進行排列有A33=6種方法,
再把3個數(shù)字做成的一個整體和2個字母進行全排列,有A33=6種方法,
再根據(jù)分步計數(shù)原理求得他選擇號牌的方法種數(shù)最多有 10×120×6×6=3600種,
故答案為:3600.

點評 本題主要考查排列與組合及兩個基本原理的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,如果輸入的n是3,那么輸出的p是( 。
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{24}$D.$\frac{1}{120}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列各組函數(shù)是同一函數(shù)的是(  )
A.y=$\frac{2x}{x}$與y=2B.y=$\sqrt{{x}^{2}}$與y=($\sqrt{x}$)2C.y=lgx2與y=2lgxD.y=$\frac{{x}^{2}}{x}$與y=x(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個頂點為B(0,b),右焦點為F,直線BF與橢圓的另一個交點為M,且|$\overrightarrow{BF}$|=2|$\overrightarrow{FM}$|,則該橢圓離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一個四棱錐的正視圖,側(cè)視圖(單位:cm)如圖所示,
(1)請畫出該幾何體的俯視圖;
(2)求該幾何體的體積;
(3)求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:=$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率等于$\frac{\sqrt{3}}{2}$,橢圓C上的點到焦點的距離的最大值為4+2$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左右頂點分別為A,B,過點P(-2,0)的動直線(x軸除外)與橢圓C相交于M,N兩點,求證:AM與BN的交點Q總在定直線l:x=-8上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某大型商場成立十周年之際,為了回饋顧客,特進行有獎銷售:有獎銷售期間,每購買滿100元該商場的商品,都有一次抽獎機會,一旦中獎,將獲得一個精美獎品;抽獎方案有A、B兩種,可自主選擇,A方案是:從裝有3個紅色小球和7個白色小球的箱子里每次摸1個小球,不放回地摸3次,若至少摸到兩個紅球就中獎,否則無獎;B方案是:從裝有3個紅色小球和7個白色小球的箱子里每次摸1個小球,有放回地摸3次,若至少有兩次摸到紅球就中獎,否則無獎;其中箱子里的小球除顏色和編號外完全相同.
(Ⅰ)若某顧客用A方案抽獎一次,求他抽到的3個小球中紅球個數(shù)X的分布列和期望;
(Ⅱ)若甲、乙兩顧客分別用A、B方案各抽獎一次,它們中獎的概率是否相同?若你去抽獎,將選擇哪種方案?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在極坐標(biāo)系中,已知曲線C1與C2的極坐標(biāo)方程分別為ρ=2sinθ與ρcosθ=-1(0≤θ<2π).求:
(1)兩曲線(含直線)的公共點P的極坐標(biāo);
(2)過點P被曲線C1截得弦長為$\sqrt{2}$的直線極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知ABC-A1B1C1為直三棱柱,AB⊥BC,AA1=AB=BC,連接AB1交A1B于點E,
(1)求證:AE⊥A1C
(2)若A1A=2,求E到平面A1AC的距離.

查看答案和解析>>

同步練習(xí)冊答案