精英家教網 > 高中數學 > 題目詳情
點P(x,y)在直線上,則的最小值是___________.
8
解:原點到直線x+y-4=0的距離,點P(x,y)在直線x+y-4=0上,則x2+y2的最小值,就是求原點到直線的距離的平方,為:()2=8,故答案為:8
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經過(4,1)點.
(1)求圓C1的方程;
(2)若圓C2與圓C1關于直線l對稱,點A、B分別為圓C1、C2上任意一點,求|AB|的最小值;
(3)已知直線l上一點M在第一象限,兩質點P、Q同時從原點出發(fā),點P以每秒1個單位的速度沿x軸正方向運動,點Q以每秒個單位沿射線OM方向運動,設運動時間為t秒.問:當t為何值時直線PQ與圓C1相切?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分16分)
已知圓,設點是直線上的兩點,它們的橫坐標分別
,點的縱坐標為且點在線段上,過點作圓的切線,切點為
(1)若,,求直線的方程;
(2)經過三點的圓的圓心是
①將表示成的函數,并寫出定義域.
②求線段長的最小值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如果直線與曲線有公共點,那么的取值范圍是             

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設平面直角坐標系中,設二次函數的圖象與兩坐標軸有三個交點,經過這三個交點的圓記為C.求:
(Ⅰ)求實數b 的取值范圍;
(Ⅱ)求圓C 的方程;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點P在直線上移動,當取最小值時,過點P引圓C:
的切線,則此切線長等于          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)在直角坐標系中,以坐標原點為圓心的圓與直線:相切.
(1)求圓的方程;
(2)若圓上有兩點關于直線對稱,且,求直線MN的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

直線被圓所截得的弦長為  (    )
A.B.1C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

.直線3x-4y-4=0被圓(x-3)2+y2=9截得的弦長為(  )
A.B.4C.D.2

查看答案和解析>>

同步練習冊答案