已知a<b,且a
2-a-6=0,b
2-b-6=0,數(shù)列{a
n}、{b
n}滿足a
1=1,a
2=-6
a,a
n+1=6a
n-9a
n-1(n≥2,n∈N
*),b
n=a
n+1-ba
n(n∈N
*).
(1)求證數(shù)列{b
n}是等比數(shù)列;
(2)已知數(shù)列{c
n}滿足c
n=
(n∈N
*),試建立數(shù)列{c
n}的遞推公式(要求不含a
n或b
n);
(3)若數(shù)列{a
n}的前n項和為S
n,求S
n.
【答案】
分析:(1)由a<b,且a
2-a-6=0,b
2-b-6=0,解得a=-2,b=3,a
2=-12.由a
1=1,a
n+1=6a
n-9a
n-1(n≥2,n∈N
*),b
n=a
n+1-ba
n(n∈N
*),得到b
n+1=a
n+2-3a
n+1=3b
n(n∈N
*).由此能夠證明數(shù)列{b
n}是等比數(shù)列.
(2)由
,得
.由此能夠推導(dǎo)出數(shù)列{c
n}的遞推公式.
(3)由c
n=
,(n∈N
*),得
=(3n-2)•3
n-1,(n∈N
*).由此利用錯位相減法能夠求出數(shù)列{a
n}的前n項和.
解答:(1)證明:∵a<b,且a
2-a-6=0,b
2-b-6=0,
∴a=-2,b=3,a
2=-12.
∵a
1=1,a
n+1=6a
n-9a
n-1(n≥2,n∈N
*),b
n=a
n+1-ba
n(n∈N
*),
∴b
n+1=a
n+2-3a
n+1=6a
n+1-9a
n-3a
n+1=3(a
n+1-3a
n)
=3b
n(n∈N
*).
又b
1=a
2-3a
1=9,
∴數(shù)列{b
n}是公比為3,首項為b
1的等比數(shù)列.
(2)解:由(1)得
.
于是,有
(n∈N
*),
即
.
又
,(n∈N
*),則c
n+1-c
n=1,n∈N
*.
因此,數(shù)列{c
n}的遞推公式是
.
(3)解:由(2)可知,數(shù)列{c
n}是公差為1,首項為
的等差數(shù)列,
于是c
n=
,(n∈N
*).
故
=(3n-2)•3
n-1,(n∈N
*).
因此,S
n=a
1+a
2+…+a
n=1+4•3+7•3
2+…+(3n-2)•3
n-1,
3S
n=1•3+4•3
2+7•3
3+…+(3n-2)•3
n,
將上述兩個等式相減,
得-2
=1+
-(3n-2)•3
n,
∴2S
n=n•3
n+1-
+
.
所以
-
+
,(n∈N
*).
點評:本題考查等比數(shù)列的證明,數(shù)列的遞推公式的推導(dǎo),數(shù)列前n項和的求法.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知a,b∈R+且a2-ab+b2=a+b,求證:1<a+b≤4.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2012•黃浦區(qū)一模)已知a<b,且a
2-a-6=0,b
2-b-6=0,數(shù)列{a
n}、{b
n}滿足a
1=1,a
2=-6a,
an+1=6an-9an-1(n≥2,n∈N*),
bn=an+1-ban(n∈N*).
(1)求證數(shù)列{b
n}是等比數(shù)列;
(2)求數(shù)列{a
n}的通項公式a
n;
(3)若{c
n}滿足c
1=1,c
2=5,
cn+2=5cn+1-6cn(n∈N*),試用數(shù)學(xué)歸納法證明:
cn +acn-1=(n≥2,n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2012•黃浦區(qū)一模)已知a<b,且a
2-a-6=0,b
2-b-6=0,數(shù)列{a
n}、{b
n}滿足a
1=1,a
2=-6
a,a
n+1=6a
n-9a
n-1(n≥2,n∈N
*),b
n=a
n+1-ba
n(n∈N
*).
(1)求證數(shù)列{b
n}是等比數(shù)列;
(2)已知數(shù)列{c
n}滿足c
n=
(n∈N
*),試建立數(shù)列{c
n}的遞推公式(要求不含a
n或b
n);
(3)若數(shù)列{a
n}的前n項和為S
n,求S
n.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版)
題型:解答題
已知a<b,且a
2-a-6=0,b
2-b-6=0,數(shù)列{a
n}、{b
n}滿足a
1=1,a
2=-6a,
,
.
(1)求證數(shù)列{b
n}是等比數(shù)列;
(2)求數(shù)列{a
n}的通項公式a
n;
(3)若{c
n}滿足c
1=1,c
2=5,
,試用數(shù)學(xué)歸納法證明:
.
查看答案和解析>>