如圖,設(shè)F是橢圓:(a>b>0)的左焦點,直線l為其左準(zhǔn)線,直線l與x軸交于點P,線段MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點P的直線與橢圓相交于不同兩點A,B,求證:∠AFM=∠BFN;
(3)(理)求三角形ABF面積的最大值.
【答案】分析:(1)由|MN|=8,知a=4,由|PM|=2|MF|,得-a=2(a-c),由此能求出橢圓的標(biāo)準(zhǔn)方程.
(2)當(dāng)AB的斜率為0時,∠AFM=∠BFM=0,滿足題意.當(dāng)AB方程為x=my-8,代入橢圓方程得(3m2+4)y2-48my+144=0,由KAF+KBF=0,得到∠AFM=∠BFN.故恒有∠AFM=∠BFN.
(3)(理)S△ABF=S△PBF-S△PAF=|=,由此能求出三角形ABF面積的最大值.
解答:解:(1)∵線段MN為橢圓的長軸,且|MN|=8,∴a=4
∵|PM|=2|MF|,
-a=2(a-c)
∴a2-ac=2ac-2c2
∴2e2-3e+1=0,
解得e=或e=1(舍去)
∴c=2,b2=a2-c2=12,
∴橢圓的標(biāo)準(zhǔn)方程為=1.
(2)當(dāng)AB的斜率為0時,顯然∠AFM=∠BFM=0,滿足題意.
當(dāng)AB方程為x=my-8,代入橢圓方程整理得
(3m2+4)y2-48my+144=0,
設(shè)A(x1,y1),B(x2,y2),
,,
∴KAF+KBF=
=
==0
∴KAF+KBF=0,從而∠AFM=∠BFN  綜上可知,恒有∠AFM=∠BFN.
(3)(理)∵P(-8,0),F(xiàn)(-2,0),∴|PF|=6,
∴|y2-y1|=
=
=,
∴S△ABF=S△PBF-S△PAF
=-
=|
=
=

當(dāng)且僅當(dāng)3
即m2=(此時適合△>0的條件)時取等號
∴三角形ABF面積的最大值是3
點評:本題考查直線與橢圓的綜合運用,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,是高考的重點.解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,直線l為左準(zhǔn)線,直線l與x軸交于P點,MN為橢圓的長軸,已知
PM
=2
MF
,且|
MN
|=8

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點P作直線與橢圓交于A、B兩點,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,MN為橢圓的長軸,|MN|=8,焦距為2c,對于點P(-
a2
c
,0
)有|PM|=2|MF|
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:對于任意的割線PAB,恒有∠AFM=∠BFN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)如圖,設(shè)F是橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的左焦點,直線l為對應(yīng)的準(zhǔn)線,直線l與x軸交于P點,線段MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:對于任意的割線PAB,恒有∠AFM=∠BFN;
(Ⅲ)求三角形△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿松縣三模)如圖,設(shè)F是橢圓:C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點,直線l為其左準(zhǔn)線,直線l與x軸交于點P,線段MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點P的直線與橢圓相交于不同兩點A,B,求證:∠AFM=∠BFN;
(3)(理)求三角形ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(13分)如圖,設(shè)F是橢圓的左焦點,直線l為其左準(zhǔn)線,直線l與x軸交于點P,線段MN為橢圓的長軸,已知

   (1)求橢圓C的標(biāo)準(zhǔn)方程;

   (2)若過點P的直線與橢圓相交于不同兩點A、B求證:∠AFM=∠BFN;

   (3)求三角形ABF面積的最大值。

查看答案和解析>>

同步練習(xí)冊答案