【題目】某工藝品廠要設(shè)計(jì)一個(gè)如圖Ⅰ所示的工藝品,現(xiàn)有某種型號(hào)的長方形材料如圖Ⅱ所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖Ⅰ的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'交DC于點(diǎn)P,設(shè)△ADP的面積為
S2 , 折疊后重合部分△ACP的面積為S1
(Ⅰ)設(shè)AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
(Ⅱ)求面積S2最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長和寬?
(Ⅲ)求面積(S1+2S2)最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長和寬?

【答案】解:(Ⅰ)由題意,AB=x,BC=2﹣x,因?yàn)閤>2﹣x,故1<x<2.
設(shè)DP=y,則PC=x﹣y,
因?yàn)椤鰽DP≌△CB'P,故PA=PC=x﹣y,
由PA2=AD2+DP2 , 得(x﹣y)2=(2﹣x)2+y2 ,
(Ⅱ)記△ADP的面積為S2 , 則
= ,
當(dāng)且僅當(dāng) 時(shí),S2取得最大值.
故當(dāng)材料長為 ,寬為 時(shí),S2最大.(Ⅲ) ,1<x<2.
于是 ,∴
關(guān)于x的函數(shù)(S1+2S2)在 上遞增,在 上遞減,
所以當(dāng) 時(shí),S1+2S2取得最大值.
故當(dāng)材料長為 m,寬為 m時(shí),S1+2S2最大
【解析】(Ⅰ)設(shè)AB=xm,利用△ADP≌△CB'P,故PA=PC=x﹣y,結(jié)合PA2=AD2+DP2 , 即可用x表示圖中DP的長度,并寫出x的取值范圍;(Ⅱ)利用基本不等式求面積S2最大時(shí),設(shè)計(jì)材料的長和寬;(Ⅲ)求面積(S1+2S2),利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可得出最大時(shí),設(shè)計(jì)材料的長和寬.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 上的動(dòng)點(diǎn)P與其頂點(diǎn) 不重合. (Ⅰ)求證:直線PA與PB的斜率乘積為定值;
(Ⅱ)設(shè)點(diǎn)M,N在橢圓C上,O為坐標(biāo)原點(diǎn),當(dāng)OM∥PA,ON∥PB時(shí),求△OMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.“x2+x﹣2>0”是“x>1”的充分不必要條件
B.“若am2<bm2 , 則a<b”的逆否命題為真命題
C.命題“?x∈R,使得2x2﹣1<0”的否定是“?x∈R,均有2x2﹣1>0”
D.命題“若x= ,則tanx=1”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,面積S= abcosC
(1)求角C的大。
(2)設(shè)函數(shù)f(x)= sin cos +cos2 ,求f(B)的最大值,及取得最大值時(shí)角B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:f1(x)=f(x),當(dāng)n≥2且x∈N*時(shí),fn(x)=f(fn1(x)),對于函數(shù)f(x)定義域內(nèi)的x0 , 若正在正整數(shù)n是使得fn(x0)=x0成立的最小正整數(shù),則稱n是點(diǎn)x0的最小正周期,x0稱為f(x)的n~周期點(diǎn),已知定義在[0,1]上的函數(shù)f(x)的圖象如圖,對于函數(shù)f(x),下列說法正確的是(寫出所有正確命題的編號(hào))
①1是f(x)的一個(gè)3~周期點(diǎn);
②3是點(diǎn) 的最小正周期;
③對于任意正整數(shù)n,都有fn )= ;
④若x0∈( ,1],則x0是f(x)的一個(gè)2~周期點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是公比為q的等比數(shù)列.
(Ⅰ)試推導(dǎo){an}的前n項(xiàng)和公式;
(Ⅱ) 設(shè)q≠1,證明數(shù)列{an+1}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為 的扇形AOB的圓心角為120°,點(diǎn)C在 上,且∠COB=30°,若 ,則λ+μ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,“A>B”是“sinA>sinB”成立的(
A.充分必要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點(diǎn),則在△ADE翻折過程中: ①|(zhì)BM|是定值;
②點(diǎn)M在某個(gè)球面上運(yùn)動(dòng);
③存在某個(gè)位置,使DE⊥A1C;
④存在某個(gè)位置,使MB∥平面A1DE.
其中正確的命題是

查看答案和解析>>

同步練習(xí)冊答案