精英家教網 > 高中數學 > 題目詳情
已知橢圓C:的離心率為,過坐標原點O且斜率為的直線l與C相交于A,B,|AB|=
(1)求a,b的值;
(2)若動圓(x-m)2+y2=1與橢圓C和直線l都沒有公共點,試求m的取值范圍.
【答案】分析:(1)依題意,l:,設A(2t,t)、B(-2t,t)(t>0),由|AB|=得20t2=40,,由此入手可解得a=4,b=2.
(2)由題意知3x2-8mx+4m2+12=0,動圓與橢圓沒有公共點,由此知|m|<3或|m|>5.再由動圓(x-m)2+y2=1與直線沒有公共點.由此可得m的取值范圍.
解答:解:(1)依題意,l:(1分)
不妨設設A(2t,t)、B(-2t,-t)(t>0)(2分)
由|AB|=得20t2=40,(3分)
所以((5分),)
解得a=4,b=2(6分).
(2)由消去y得3x2-8mx+4m2+12=0(7分)
動圓與橢圓沒有公共點,當且僅當△=(-8m)2-4×3×(4m2+12)=16m2-144<0或|m|>5(9分)
解得|m|<3或|m|>5(10分)
動圓(x-m)2+y2=1與直線沒有公共點當且僅當,即|m|>(12分)解(13分)
得m的取值范圍為.(14分)
點評:本題考查直線和圓錐曲線的位置關系,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓c的方程為

查看答案和解析>>

科目:高中數學 來源:2009年廣東省廣州市高考數學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經過點
(1)求橢圓C的方程;
(2)設F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年重慶市七區(qū)高三第一次調研測試數學理卷 題型:選擇題

已知橢圓C:的離心率為,過右焦點且斜率為的直線與橢圓C相交于、兩點.若,則 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中數學 來源:2013屆廣東省高二第一學期期末考試文科數學 題型:解答題

(本小題滿分12分)

已知橢圓C:,它的離心率為.直線與以原點為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中數學 來源:2010-2011年吉林一中高二下學期第一次月考數學文卷 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設直線與橢圓C交于,兩點,點,且,求直線的方程.

 

查看答案和解析>>

同步練習冊答案