ab為實數(shù)時,“a2-b2=0”是“a=b”成立的什么條件?

解析:當a2-b2=0時,有a=ba=-b,即由a2-b2=0并不能確定出a=b,?

a=b時,一定有a2-b2=0成立.?

故“a2-b2=0”是“a=b”成立的必要不充分條件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),且a≠0),x∈R,H(x)=
f(x)
0
(x>0)
(x=0)
-f(x)(x<0)

(1)若f(-1)=0,且方程ax2+bx+1=0(a≠0)有唯一實根,求H(x)的表達式;
(2)在(1)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調函數(shù),求實數(shù)k取值范圍;
(3)設a=1且b=0,解關于m的不等式:H(m2+2)+H(3m)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義域為R的函數(shù)f(x)=
-2x+a2x+1+b
(a,b為實數(shù)).
(1)若f(x)是奇函數(shù),求a,b的值;
(2)當f(x)是奇函數(shù)時,證明對任何實數(shù)x,c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,F(xiàn)(x)=
f(x)(x>0)
-f(x)(x<0).

(1)若f(-1)=0,且函數(shù)f(x)≥0的對任意x屬于一切實數(shù)成立,求F(x)的表達式;
(2)在 (1)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a,b為實數(shù)時,“a2-b2=0”是“a=b”成立的什么條件?

查看答案和解析>>

同步練習冊答案