已知F1,F(xiàn)2是橢圓
x2
4
+
y2
3
=1的左、右焦點,直線x=m與橢圓交于A,B兩點,求△ABF1的周長最大值.
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:如圖所示,|AF1|+|AD|≤|AF1|+|AF2|=2a,可得△ABF1的周長最大值為4a.
解答: 解:如圖所示,
∵|AF1|+|AD|≤|AF1|+|AF2|=2a,
∴△ABF1的周長最大值為4a=8.
點評:本題考查了橢圓的定義、三角形的三邊大小關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x-2
3
cos2x+
3
+a.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)x∈[0,
π
2
]時,f(x)的最小值是-2,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|-2<x<4},B={y|y=|x+1|,x∈A},則A∩B=( 。
A、∅
B、{x|1<x<4}
C、{x|-2<x<5}
D、{x|0≤x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A,B,且△OAB的面積最大?若存在,求出點M的坐標及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在邊長為1的正方形OABC中任取一點P,分數(shù)以O(shè)、B為圓心,半徑為
2
2
畫圓弧,點P在兩圓之外的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩圓x2+y2-1=0與x2+y2+3x+9y+2=0的公共弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1,P在BD1上,過P作垂直于BD1的平面α,記這樣得到的截面多邊形(含三角形)周長為y,為什么當α在平面AB1C,面A1DC1之間運動時,y不變?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2
-arctanx(x∈R)的反函數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二面角α-l-β的大小為45°,線段AB?α,B∈l,AB與l所成角為45°,則AB與β所成角為
 

查看答案和解析>>

同步練習(xí)冊答案