【題目】如圖,橢圓()的離心率是,過點(,)的動直線與橢圓相交于,兩點,當(dāng)直線平行于軸時,直線被橢圓截得的線段長為.
⑴求橢圓的方程:
⑵已知為橢圓的左端點,問: 是否存在直線使得的面積為?若不存在,說明理由,若存在,求出直線的方程.
【答案】(1);(2)存在直線方程使得.
【解析】試題分析:(1)借助題設(shè)條件建立方程組求解;(2)依據(jù)題設(shè)運用直線與橢圓的位置關(guān)系進行探求.
試題解析:
(1)橢圓:的離心率是,過點的動直線與橢圓相交于兩點,
當(dāng)直線平行于軸時,直線被橢圓截得的線段長為,
點在橢圓上,
,解得:,………………4分
橢圓的方程為………………………5分,
(2)當(dāng)直線與軸平行時,不存在,…………………6分,
設(shè)直線的方程為,并設(shè)兩點,,
聯(lián)立,得,
其判別式,…………8分,
,,
,…………10分
假設(shè)存在直線,則有,
解得,負(fù)解刪除,,……………………12分
故存在直線方程使得…………13分.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)①f(x)=4x+-5,②f(x)=|log2 x|-()x,③f(x)=cos(x+2)-cosx,判斷如下兩個命題的真假:
命題甲:f(x)在區(qū)間(1,2)上是增函數(shù);
命題乙:f(x)在區(qū)間(0,+∞)上恰有兩個零點x1,x2,且x1x2<1.
能使命題甲、乙均為真的函數(shù)的序號是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+x2+x(0<a<1,x∈R).若對于任意的三個實數(shù)x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在直角梯形中,,,,,是的中點,是與的交點,將沿折起到的位置,如圖乙.
(Ⅰ)證明:平面;
(Ⅱ)若平面平面,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在上的最小值為,當(dāng)把的圖象上所有的點向右平移個單位后,得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)在△中,角,,對應(yīng)的邊分別是,,,若函數(shù)在軸右側(cè)的第一個零點恰為,,求△的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).若的一個零點附近的函數(shù)值如下所示,請用二分法求出方程的一個正實數(shù)解的近似值(精確度0.1).,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過定點P(-2,1)作直線l分別與x、y軸交于A、B兩點,
(1)求經(jīng)過點P且在兩坐標(biāo)軸上的截距相等的直線l方程.
(2)求使面積為4時的直線l方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com