已知函數(shù),數(shù)列an滿足an=f(n)(n∈N*),且an是遞增數(shù)列,則實數(shù)a的取值范圍是    
【答案】分析:由函數(shù),數(shù)列an滿足an=f(n)(n∈N*),且an是遞增數(shù)列,我們易得函數(shù)為增函數(shù),根據(jù)分段函數(shù)的性質(zhì),我們可得函數(shù)在各段上均為增函數(shù),根據(jù)一次函數(shù)和指數(shù)函數(shù)單調(diào)性,我們易得a>1,且3-a>0,且f(7)<f(8),由此構(gòu)造一個關(guān)于參數(shù)a的不等式組,解不等式組即可得到結(jié)論.
解答:解:∵數(shù)列{an}是遞增數(shù)列,
又∵
an=f(n)(n∈N*),
∴1<a<3且f(7)<f(8)
∴7(3-a)-3<a2
解得a<-9,或a>2
故實數(shù)a的取值范圍是(2,3)
故答案為:(2,3)
點(diǎn)評:本題考查的知識點(diǎn)是分段函數(shù),其中根據(jù)分段函數(shù)中自變量n∈N*時,對應(yīng)數(shù)列為遞增數(shù)列,得到函數(shù)在兩個段上均為增函數(shù),且f(7)<f(8),從而構(gòu)造出關(guān)于變量a的不等式是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+
1
2
,(x≤
1
2
)
2x-1,(
1
2
<x<1)
x-1,(x≥1)
,若數(shù)列{an}滿a1=
7
3
,an+1=f(an),n∈N*,則a2006+a2009+a2010=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:聊城一中數(shù)列測試題 題型:044

已知函數(shù)f(x)=(x≠-1).設(shè)數(shù)列{an}滿足a1=1,an+1=f(an),數(shù)列{bn}滿bn=|an|,Sn=b1+b2+…+bn(n∈N*)

(Ⅰ)用數(shù)學(xué)歸納法證明;

(Ⅱ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省黃岡市黃州一中高三(上)月考數(shù)學(xué)試卷(1月份)(解析版) 題型:填空題

已知函數(shù)f(x)=若數(shù)列{an}滿a1=,an+1=f(an),n∈N*,則a2006+a2009+a2010=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年河南省開封市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:填空題

已知函數(shù)f(x)=若數(shù)列{an}滿a1=,an+1=f(an),n∈N*,則a2006+a2009+a2010=   

查看答案和解析>>

同步練習(xí)冊答案