7.給出下列命題:
(1)兩條平行線與同一平面所成角相等;
(2)與同一平面所成角相等的兩條直線平行;
(3)一條直線與兩個(gè)平行平面所成角相等;
(4)一條直線與兩個(gè)平面所成角相等,這兩個(gè)平面平行.
其中正確的命題是(1)(3).(填上所有正確命題的序號(hào))

分析 對(duì)線面關(guān)系全面考慮,利用線面所成的角的定義進(jìn)行分析選擇.

解答 解:1)兩條平行線與同一平面所成角相等;正確;
(2)與同一平面所成角相等的兩條直線可能相交或者異面或者平行;故2錯(cuò)誤;
(3)一條直線與兩個(gè)平行平面所成角相等;正確;
(4)一條直線與兩個(gè)平面所成角相等,這兩個(gè)平面可能相交;故4錯(cuò)誤;
故答案為:(1)(3).

點(diǎn)評(píng) 本題考查了空間線面關(guān)系;考查學(xué)生的空間想象能力;注意特殊的線面關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖所示是一次體操比賽時(shí)七位評(píng)委對(duì)某選手打分的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和標(biāo)準(zhǔn)差分別為(  )
A.87.4,17.2B.87.4,4.147C.87,17.2D.87,4.147

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知數(shù)列{an}滿足$2{a_{n+1}}+{a_n}=3({n∈{N^*}})$,且a1=4,其前n項(xiàng)和為Sn,則滿足不等式$|{{S_n}-n-2}|<\frac{1}{30}$的最小整數(shù)n是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在平面直角坐標(biāo)系中,銳角α,β的終邊分別與單位圓交于A,B兩點(diǎn).
(Ⅰ)若sinα=$\frac{3}{5}$,點(diǎn)B的橫坐標(biāo)為$\frac{5}{13}$,求cos(α+β)的值;
(Ⅱ)已知點(diǎn)C$(-2,2\sqrt{3})$,求函數(shù)f(α)=$\overrightarrow{OA}$•$\overrightarrow{OC}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在銳角△ABC中,已知BC=1,B=2A,則AC的取值范圍是(  )
A.$({0,\sqrt{2}})$B.$({0,\sqrt{3}})$C.$({\sqrt{2},\sqrt{3}})$D.$({\sqrt{3},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=x2-2x+alnx有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,則( 。
A.$f({x_1})<\frac{3+2ln2}{4}$B.$f({x_1})<-\frac{1+2ln2}{4}$C.$f({x_1})>\frac{1+2ln2}{4}$D.$f({x_1})>-\frac{3+2ln2}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>1},U=R.
(1)求A∪B,(∁UA)∩B;
(2)求A∩C,B∪C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓x2+(m+3)y2=m(m>0)的離心率$e=\frac{{\sqrt{3}}}{2}$,求m的值及橢圓的長(zhǎng)軸和短軸的長(zhǎng)、焦點(diǎn)的坐標(biāo)、頂點(diǎn)的坐標(biāo)、準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知映射f:A→B.其中A={1,2,3},f:x→2x.則B={2,4,6}.

查看答案和解析>>

同步練習(xí)冊(cè)答案