如圖,已知兩圓內(nèi)切于P,大圓的弦AB切小圓于C點.

求證:∠1=∠2.

答案:
解析:

  證明:過點P作兩圓的外公切線MN,如圖,因為AB切小圓于C點,

  所以∠MPC=∠ACP,∠MPA=∠B,

  ∠1=∠MPC-∠MPA.

  因為∠2=∠ACP-∠B,

  所以∠1=∠2.

  分析:要證∠1=∠2,找不到等角的代換與轉(zhuǎn)化,所以作內(nèi)切兩圓的外公切線MN,構(gòu)造弦切角.

  利用弦切角定理及其推論的等量關(guān)系,通過三角形外角和定理及等式的性質(zhì)使問題得證.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•徐州模擬)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點T,P是外圓⊙O上任意一點,連PT交⊙O1于點M,PN與內(nèi)圓⊙O1相切,切點為N.求證:PN:PM為定值.
B.選修4-2:矩陣與變換
已知矩陣M=
21
34

(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量;
C.選修4-2:矩陣與變換
在平面直角坐標系x0y中,求圓C的參數(shù)方程為
x=-1+rcosθ
y=rsinθ
為參數(shù)r>0),以O(shè)為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
4
)=2
2
.若直線l與圓C相切,求r的值.
D.選修4-5:不等式選講
已知實數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
4
3

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考試題數(shù)學1(江蘇卷)解析版 題型:解答題

 【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答

             若多做,則按作答的前兩題評分。解答時應寫出文字說明、證明過程或演算步驟.

A選修4-1:幾何證明選講

   如圖,圓與圓內(nèi)切于點,其半徑分別為,

的弦交圓于點不在上),

求證:為定值。

B選修4-2:矩陣與變換

已知矩陣,向量,求向量,使得

C選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,求過橢圓為參數(shù))的右焦點且與直線為參數(shù))平行的直線的普通方程。

D.選修4-5:不等式選講

解不等式:

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,線段AB兩端點分別在x軸,y軸上滑動,且).M為線段AB上一點,且

(1)求點M的軌跡的方程;

(2)已知圓O:,設(shè)P為軌跡上任一點,若存在以點P為頂點,與圓O外切且內(nèi)接于軌跡的平行四邊形,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省蘇北四市高三第三次質(zhì)量檢測數(shù)學試卷(解析版) 題型:解答題

本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點T,P是外圓⊙O上任意一點,連PT交⊙O1于點M,PN與內(nèi)圓⊙O1相切,切點為N.求證:PN:PM為定值.
B.選修4-2:矩陣與變換
已知矩陣M=
(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量;
C.選修4-2:矩陣與變換
在平面直角坐標系x0y中,求圓C的參數(shù)方程為為參數(shù)r>0),以O(shè)為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為.若直線l與圓C相切,求r的值.
D.選修4-5:不等式選講
已知實數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:

查看答案和解析>>

同步練習冊答案