分析 (Ⅰ)a+c=$\sqrt{2}$b,兩邊平方化簡,根據(jù)基本不等式的關(guān)系得b2≥2ac,根據(jù)余弦定理求得cosB≥0,即可得到B≤$\frac{π}{2}$;
(Ⅱ)S=tanB,根據(jù)三角形面積公式求得accosB=2,余弦定理可求得ac=4,即可求得cosB及tanB,可求得S.
解答 解:(Ⅰ)在△ABC中,$\sqrt{2}$b=a+c,
兩邊平方得:a2+c2+2ac=2b2,
∴b2≥2ac,當(dāng)且僅當(dāng)a=c時成立,
由余弦定理可知:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{^{2}-2ac}{2ac}$≥0,
∴B≤$\frac{π}{2}$;
(Ⅱ)S=$\frac{1}{2}$acsinB=tanB,
accosB=2,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{^{2}-2ac}{2ac}$,
$\frac{2}{ac}$=$\frac{12-2ac}{2ac}$,
ac=4
∴cosB=$\frac{1}{2}$,sin=$\frac{\sqrt{3}}{2}$,
tanB=$\sqrt{3}$.
∴S=$\sqrt{3}$.
點評 本題考查正弦余弦定理與基本不等式相結(jié)合,計算過程簡單,思路明確,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3n+1}$ | B. | $\frac{n}{3n+1}$ | C. | $\frac{1}{3n-2}$ | D. | $\frac{n}{2(3n+2)}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x與y負(fù)相關(guān),x與z負(fù)相關(guān) | B. | x與y正相關(guān),x與z正相關(guān) | ||
C. | x與y正相關(guān),x與z負(fù)相關(guān) | D. | x與y負(fù)相關(guān),x與z正相關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-2)2+(y+2$\sqrt{2}$)2=8 | B. | (x-2)2+(y+2$\sqrt{2}$)2=64 | C. | (x-2)2+(y+2$\sqrt{2}$)2=6 | D. | (x-2)2+(y+2$\sqrt{2}$)2=36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個 | B. | 4個 | C. | 1個 | D. | 2個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com