【題目】若函數(shù)f(x)=3sin(2x﹣ )的圖象為C,則下列結(jié)論中正確的序號是 . ①圖象C關(guān)于直線x= 對稱;
②圖象C關(guān)于點( ,0)對稱;
③函數(shù)f(x)在區(qū)間(﹣ , )內(nèi)不是單調(diào)的函數(shù);
④由y=3sin2x的圖象向右平移 個單位長度可以得到圖象C.

【答案】①②
【解析】解:因為當x= 時,f(x)=3sin(2× )=3sin , 所以直線x= 是圖象的對稱軸,故①正確;
因為當x= 時,f(x)=3sin(2× )=0,
所以函數(shù)圖象關(guān)于點( ,0)對稱,故②正確;
令﹣ ≤2x﹣ ,解得x∈[﹣ , ],
所以函數(shù)的一個增區(qū)間是[﹣ , ],因此f(x)在區(qū)間[0, ]上是增函數(shù),故③不正確;
由y=3sin2x的圖象向右平移 個單位,得到的圖象對應(yīng)的函數(shù)表達式為
y=3sin2(x﹣ )=3sin(2x﹣ ),所以所得圖象不是函數(shù)f(x)=3sin(2x﹣ )的圖象C,故④不正確
所以答案是:①②.
【考點精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】不等式x2﹣4x>2ax+a對一切實數(shù)x都成立,則實數(shù)a的取值范圍是(
A.(1,4)
B.(﹣4,﹣1)
C.(﹣∞,﹣4)∪(﹣1,+∞)
D.(﹣∞,1)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB. (Ⅰ)證明:A=2B
(Ⅱ)若△ABC的面積S= ,求角A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是遞增的等差數(shù)列,a2 , a4是方程x2﹣5x+6=0的根. (I)求{an}的通項公式;
(II)求數(shù)列{ }的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應(yīng)數(shù)據(jù)

x

2

4

5

6

8

y

30

40

60

50

70

回歸方程為 =bx+a,其中b= ,a= ﹣b
(1)畫出散點圖,并判斷廣告費與銷售額是否具有相關(guān)關(guān)系;
(2)根據(jù)表中提供的數(shù)據(jù),求出y與x的回歸方程 =bx+a;
(3)預(yù)測銷售額為115萬元時,大約需要多少萬元廣告費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=acosx+b的最大值為1,最小值為﹣3,試確定 的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖中的程序框圖的算法思路來源于我國古代數(shù)學名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b,i的值分別為8,10,0,則輸出的a和i和值分別為(
A.2,5
B.2,4
C.0,4
D.0,5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面內(nèi)到定點F(0,1)和定直線l:y=﹣1的距離之和等于4的動點的軌跡為曲線C,關(guān)于曲線C的幾何性質(zhì),給出下列四個結(jié)論: ①曲線C的方程為x2=4y;
②曲線C關(guān)于y軸對稱
③若點P(x,y)在曲線C上,則|y|≤2;
④若點P在曲線C上,則1≤|PF|≤4
其中,所有正確結(jié)論的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=5,a2=2,an=2an1+3an2 , (n≥3) (Ⅰ)證明數(shù)列{an﹣3an1}成等比數(shù)列,并求數(shù){an}列的通項公式an;
(Ⅱ)若數(shù)列bn= (an+1+an),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案