【題目】已知函數(shù)

1)若,求函數(shù)的零點(diǎn);

2)若不存在相異實(shí)數(shù)、,使得成立.求實(shí)數(shù)的取值范圍;

3)若對任意實(shí)數(shù),總存在實(shí)數(shù),使得成立,求實(shí)數(shù)的最大值.

【答案】1)零點(diǎn)分別是:、;(2;(3.

【解析】

1)解方程即可得出函數(shù)的零點(diǎn);

2)將函數(shù)的解析式表示為分段函數(shù)的形式,對實(shí)數(shù)、三種情況討論,分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合題中結(jié)論可求得實(shí)數(shù)的取值范圍;

3)由題意可得,對實(shí)數(shù)、三種情況討論,分析函數(shù)在區(qū)間上的單調(diào)性,求得函數(shù)在區(qū)間上的最大值和最小值,進(jìn)而可得出,由此可求得實(shí)數(shù)的最大值.

1)當(dāng)時,,令,可得,

所以,,解得,

所以,當(dāng)時,函數(shù)的零點(diǎn)分別為、、

2.

①當(dāng)時,函數(shù)上遞減,符合題意;

②當(dāng)時,函數(shù)上遞增,符合題意;

③當(dāng)時,函數(shù)上遞增,在上遞減,不符合題意.

綜上所述,實(shí)數(shù)的取值范圍是;

3)由題意可得.

①當(dāng)時,函數(shù)上遞減,

,,

②當(dāng)時,函數(shù)上遞增,

,,

③當(dāng)時,函數(shù)上遞增,在上遞減,

,.

當(dāng)時,

當(dāng)時,.

綜上所述,,

因此,實(shí)數(shù)的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)各選一匹進(jìn)行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點(diǎn),恰好又是雙曲線的右焦點(diǎn),雙曲線過點(diǎn),且其離心率為

(1)求拋物線和雙曲線的標(biāo)準(zhǔn)方程;

(2)已知直線過點(diǎn),且與拋物線交于,兩點(diǎn),以為直徑作圓,設(shè)圓軸交于點(diǎn),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】常州別稱龍城,是一座有著3200多年歷史的文化古城.常州既有春秋淹城、天寧寺等名勝古跡,又有中華恐龍園、嬉戲谷等游樂景點(diǎn),每年都有大量游客來常州參觀旅游.為合理配置旅游資源,管理部門對首次來中華恐龍園游覽的游客進(jìn)行了問卷調(diào)查,據(jù)統(tǒng)計,其中的人計劃只游覽中華恐龍園,另外的人計劃既游覽中華恐龍園又參觀天寧寺.每位游客若只游覽中華恐龍園,得1分;若既游覽中華恐龍園又參觀天寧寺,得2.假設(shè)每位首次來中華恐龍園游覽的游客均按照計劃進(jìn)行,且是否參觀天寧寺相互獨(dú)立,視頻率為概率.

1)有2名首次來中華恐龍園游覽的游客是拼車到常州的,求2名游客都是既游覽中華恐龍園又參觀天寧寺的概率;

2)從首次來中華恐龍園游覽的游客中隨機(jī)抽取3人,記這3人的合計得分為X,求X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線的斜率為1的切線方程;

(Ⅱ)當(dāng)時,求證:;

(Ⅲ)設(shè),記在區(qū)間上的最大值為Ma),當(dāng)Ma)最小時,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)存在,對任意,有不等式成立,求實(shí)數(shù)的取值范圍;

2)如果存在、,使得成立,求滿足條件的最大整數(shù);

3)對任意,存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,AB=AD=2BC=2,BCAD,ABAD,△PBD為正三角形.且PA=2

1)證明:平面PAB⊥平面PBC;

2)若點(diǎn)P到底面ABCD的距離為2,E是線段PD上一點(diǎn),且PB∥平面ACE,求四面體A-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線與曲線兩交點(diǎn)所在直線的極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,直線軸的交點(diǎn)為,與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,點(diǎn)平面,點(diǎn)是線段的中點(diǎn),若,則當(dāng)的面積取得最小值時,

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案