已知圓的方程為x2+ y2-6x-8y=0,設(shè)圓中過(guò)點(diǎn)(2,5)的最長(zhǎng)弦與最短弦分別為AB、CD,則直線AB與CD的斜率之和為


  1. A.
    -1
  2. B.
    0
  3. C.
    1
  4. D.
    -2
B
考點(diǎn):直線與圓的位置關(guān)系;直線的斜率.
專題:計(jì)算題.
分析:把圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo),由(2,5)在圓內(nèi),故過(guò)此點(diǎn)最長(zhǎng)的弦為直徑,最短弦為與這條直徑垂直的弦,所以由圓心坐標(biāo)和(2,5)求出直線AB的斜率,再根據(jù)兩直線垂直時(shí)斜率的乘積為-1求出直線CD的斜率,進(jìn)而求出兩直線的斜率和.
解答:解:把圓的方程化為標(biāo)準(zhǔn)方程得:(x-3)2+(y-4)2=25,
∴圓心坐標(biāo)為(3,4),
∴過(guò)(2,5)的最長(zhǎng)弦AB所在直線的斜率為=-1,
又最長(zhǎng)弦所在的直線與最短弦所在的直線垂直,
∴過(guò)(2,5)最短弦CD所在的直線斜率為1,
則直線AB與CD的斜率之和為-1+1=0.
故選B
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,垂徑定理,直線斜率的計(jì)算方法,以及兩直線垂直時(shí)斜率滿足的關(guān)系,其中得出過(guò)點(diǎn)(2,5)最長(zhǎng)的弦為直徑,最短弦為與這條直徑垂直的弦是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓的方程為x2+y2-6x-8y=0,設(shè)該圓過(guò)點(diǎn)(3,5)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為( 。
A、10
6
B、20
6
C、30
6
D、40
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、已知圓的方程為x2+y2-2x+6y+8=0,那么該圓的一條直徑所在直線的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓的方程為x2+y2-6x-8y=0.設(shè)該圓過(guò)點(diǎn)(3,5)的兩條弦分別為AC和BD,且AC⊥BD.則四邊形ABCD的面積最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓的方程為x2+y2=4,過(guò)點(diǎn)M(2,4)作圓的兩條切線,切點(diǎn)分別為A1、A2,直線A1A2恰好經(jīng)過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線x=-1與橢圓相交于A、B兩點(diǎn),P是橢圓上異于A、B的任意一點(diǎn),直線AP、BP分別交定直線l:x=-4于兩點(diǎn)Q、R,求證
OQ
OR
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓的方程為x2+y2+2x-4y-4=0,求經(jīng)過(guò)點(diǎn)(4,-1)的該圓的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案