14.已知直線(xiàn)l1:x+2ay-1=0,l2:(a+1)x-ay=0,若l1∥l2,則實(shí)數(shù)a的值為( 。
A.$-\frac{3}{2}$B.0C.$-\frac{3}{2}$或0D.2

分析 利用兩條直線(xiàn)平行的條件,即可得出結(jié)論.

解答 解:∵直線(xiàn)l1:x+2ay-1=0,l2:(a+1)x-ay=0,l1∥l2
∴-a=2a(a+1),
∴a=-$\frac{3}{2}$或0,
故選:C.

點(diǎn)評(píng) 本題考查兩條直線(xiàn)平行的條件,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.觀察下列數(shù)表:
1
3   5
7   9    11   13
15  17   19   21   23   25   27  29

設(shè)1033是該表第m行的第n個(gè)數(shù),則m+n=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.以下判斷正確的是( 。
A.函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f'(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的充要條件
B.命題“$?{x_0}∈R,{x_0}^2+{x_0}-1<0$”的否定是“?x∈R,x2+x-1>0”
C.“$φ=kπ+\frac{π}{2}(k∈Z)$”是“函數(shù)f(x)=sin(ωx+φ)是偶函數(shù)”的充要條件
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A⊆{1,2,3,4,5},且A∩{1,2,3}={1,2},則滿(mǎn)足條件的集合A的個(gè)數(shù)是( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在凸四邊形ABCD中,AB=1,BC=$\sqrt{3}$,AC⊥DC,CD=$\sqrt{3}$AC.設(shè)∠ABC=θ.
(1)若θ=30°,求AD的長(zhǎng);
(2)當(dāng)θ變化時(shí),求BD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.A,B是△ABC的兩個(gè)內(nèi)角,p:sinAsinB<cosAcosB;q:△ABC是鈍角三角形.則p是q成立的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.一個(gè)幾何體的三視圖如圖所示,其中俯視圖的曲線(xiàn)部分是四分之一圓弧,則該幾何體的體積為$1-\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義在R上的函數(shù)f(x),對(duì)任意的x∈R都有f(-x)=-f(x)且當(dāng)x≥0時(shí)f(x)=x2-2x,則不等式xf(x)<0的解集為(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(0,2)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,$AB=\sqrt{2}$,AF=1,M是線(xiàn)段EF的中點(diǎn).
(1)求三棱錐A-BDF的體積;
(2)求CM與平面ABCD所成的角大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案