解關(guān)于x的不等式|
3x
x2-4
|≤1.
考點:其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:由|
3x
x2-4
|≤1得:-1≤
3x
x2-4
≤1
,轉(zhuǎn)化為不等式組
(x+4)(x-1)
x2-4
≥0
(x-4)(x+1)
x2-4
≥0
,解之即可.
解答: 解:(1)由|
3x
x2-4
|≤1得:-1≤
3x
x2-4
≤1
,
3x+x2-4
x2-4
≥0
3x-x2+4
x2-4
≤0
,即
(x+4)(x-1)
x2-4
≥0
(x-4)(x+1)
x2-4
≥0
,
解得:x<-4或-1<x<1或x>4,
所以,原不等式的解集為{x|x<-4或-1<x<1或x>4}.
點評:本題考查高次不等式的解法,考查穿根法的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2(a-1)x+3在區(qū)間(-∞,4]上是減函數(shù),那么實數(shù)a的取值范圍是( 。
A、a≥3B、a≤5
C、a≤-3D、a≥-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某建筑的金屬支架如圖所示,根據(jù)要求AB至少長2.8米,C為AB的中點,B到D的距離比CD的長小0.5m,∠BCD=60°,已知建筑支架的材料每米的價格為每米100元.
(1)設(shè)BC=x米,CD=y米,試用x表示y;
(2)問怎樣設(shè)計AB,CD的長,可使建造這個支架的成本最低,并求最低成本是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn若對任意自然數(shù)n都有
Sn
Tn
=
2n-3
4n-3
,則
a9
b5+b7
+
a3
b8+b4
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

國慶期間襄陽某體育用品專賣店抓住商機大量購進(jìn)某特許商品進(jìn)行銷售,該特許產(chǎn)品的成本為20元/個,每日的銷售量y(單位:個)與單價x(單位:元)之間滿足關(guān)系式y(tǒng)=
a
x-20
+4(x-50)2
,(其中20<x<50,a為常數(shù)).當(dāng)銷售價格為40元/個時,每日可售出該商品401個.
(1)求a的值及每日銷售該特許產(chǎn)品所獲取的總利潤L(x);
(2)試確定單價x的值,使所獲得的總利潤L(x)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從裝有除顏色外完全相同的2個紅球和2個白球的口袋內(nèi)任取2個球,則對立的兩個事件是( 。
A、至少有1個白球,都是白球
B、至少有1個白球,至少有1個紅球
C、恰有1個白球,恰有2個白球
D、至少有1個白球,都是紅球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把由半橢圓
x2
a2
+
y2
b2
=1(x≥1)與半橢圓
y2
b2
+
x2
c2
=1(x<0)合成的曲線稱作“果圓”(其中a2=b2+c2,a>b>c>0).如圖,設(shè)點F0、F1、F2是相應(yīng)橢圓的焦點,A1、A2和B1、B2是“果圓”與x,y軸的交點,若△F0F1F2是邊長為1的等邊三角形,則ab的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,公比q=2,前99項的和S99=56,則a2+a5+a8+…+a98=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠BAC
π
2
,AB=AC=6,
BD
=2
BC
.求
AB
AD
 的值.

查看答案和解析>>

同步練習(xí)冊答案