傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上畫點或用小石子表示數(shù). 他們研究過如圖所示的三角形數(shù):

 

 
將三角形數(shù)1,3,6,10,記為數(shù)列,將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列. 可以推測:

(Ⅰ)是數(shù)列中的第         項;
(Ⅱ)________(用k表示)

(Ⅰ)9;(Ⅱ)

解析試題分析:(I)由題設條件可以歸納出,故,由此可知,第3個可被5整除的數(shù)為45,是數(shù)列中的第9項;
(II)由于是偶數(shù),由(I)知,第個被5整除的數(shù)出現(xiàn)在第組倒數(shù)第一個,故它是數(shù)列中的第項,所以.
考點:本小題主要考查數(shù)列的遞推關系,數(shù)列的表示及歸納推理,考查學生的歸納推理能力.
點評:解決此小題的關鍵是由題設得出相鄰兩個三角形數(shù)的遞推關系,由此列舉出三角形數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

數(shù)列滿足,則               .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

a1,a2, ,an為正整數(shù),其中至少有五個不同值. 若對于任意的ij(1≤ijn),存在klkl,且異于ij)使得aiajakal,則n的最小值是     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學著作之一。書中有一道這樣的題目:把100個面包分給五人,使每人成等差數(shù)列,且使最大的三份之和的是較小的兩份之和,則最小1份的大小是       

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在數(shù)列{an}中,a1=2,an+1=an+n,則a100=       .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對于數(shù)列,從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學在學習了這一個概念之后,打算研究首項為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項,第三項和第五項.
(1) 若成等比數(shù)列,求的值;
(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個命題:“對于首項為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項,由的大小關系去判斷該命題是否正確. 他將得到什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若數(shù)列的前n項和為,則下列命題:
(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;
(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項均為正數(shù);
(3)若是等差數(shù)列(公差),則的充要條件是
(4)若是等比數(shù)列,則的充要條件是
其中,正確命題的個數(shù)是(   )

A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

將楊輝三角中的奇數(shù)換成1,偶數(shù)換成0,得到如圖所示的0—1三角數(shù)表.從上往下數(shù),第1次全行的數(shù)都為1的是第1行,第2次全行的數(shù)都為1的是第3行,…,第次全行的數(shù)都為1的是第          行.
第1行      1    1
第2行         1   0   1
第3行       1   1   1   1
第4行     1   0   0   0   1
第5行   1   1   0   0   1   1
…………

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

對于數(shù)列),若,….,中最大值(,則稱數(shù)列為數(shù)列的“凸值數(shù)列”。如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有______
①遞減數(shù)列的“凸值數(shù)列”是常數(shù)列;②不存在數(shù)列,它的“凸值數(shù)列”還是本身;
③任意數(shù)列的“凸值數(shù)列”遞增數(shù)列;④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列的個數(shù)為3.

查看答案和解析>>

同步練習冊答案