在△ABC中,a,b,c分別是∠A,∠B,∠C的對(duì)邊長(zhǎng),已知a,b,c成等比數(shù)列,且a2-c2=ac-bc,
(1)求∠A的大。
(2)若b=2,求△ABC的面積的大小.(附:關(guān)于x的方程只有一個(gè)正根2)
【答案】分析:(1)由已知b2=ac及a2-c2=ac-bc可得b2+c2-a2=bc,利用余弦定理可求A
(2)由(1)知∠A=60°,由b=2,可得,結(jié)合,可求c利用可求
解答:解:(1)∵a,bc成等比數(shù)列∴b2=ac又a2-c2=ac-bc
b2+c2-a2=bc,在△ABC中,由余弦定理得
∠A=60°(5分)
(2)∵由(1)知∠A=60°,∴=(6分)
由b=2,可得,∴,∴,∴c=2.
點(diǎn)評(píng):本題主要考查了余弦定理在解三角形中的應(yīng)用,三角形的面積公式,屬于公式的綜合應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.滿(mǎn)足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長(zhǎng)為20cm,求此三角形的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過(guò)如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2

③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍.
(1)求f(x)的周期和對(duì)稱(chēng)軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案