已知(1-2x)n=a1+a2x+a3x3+…+anxn,則a1+a2+a3+…+an=
(-1)n
(-1)n
分析:把x=1代入已知的等式,即得a1+a2+a3+…+an 的值.
解答:解:∵已知(1-2x)n=a1+a2x+a3x3+…+anxn,令x=1可得 a1+a2+a3+…+an=(-1)n,
故答案為 (-1)n
點評:本題主要考查二項式定理的應用,二項式展開式的通項公式,求展開式的系數(shù)和常用的方法是賦值法,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知(1-2x)n展開式中,奇數(shù)項的二項式系數(shù)之和為64,則(1-2x)n(1+x)展開式中含x2項的系數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1+2
x
n展開式中某項的系數(shù)恰為它的前一項系數(shù)的2倍,而等于它后一項系數(shù)的
5
6
,求該展開式中二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1-2x)n的展開式中,二項式系數(shù)的和為64,則它的二項展開式中,系數(shù)最大的是第
5
5
項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•南充三模)已知(1-2x)n的展開式中只有第3項的二項式系數(shù)最大,則展開式的各項系數(shù)和等于
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1-2x)n的展開式中,二項式系數(shù)的和為64,則它的二項展開式的中間項是
-160x3
-160x3

查看答案和解析>>

同步練習冊答案