已知集合A={x|-1<x<1},集合B={x|x(x-1)≥0},則A∩B=


  1. A.
    [0,1)
  2. B.
    (-1,0]
  3. C.
    [1,+∞)
  4. D.
    (-1,0)
B
分析:通過解不等式求出集合B,再進行交集運算即可.
解答:∵x(x-1)≥0?x≥1或x≤0,∴B={x|x≥1或x≤0},
∴A∩B=(-1,0].
故選B
點評:本題考查交集運算.可結合數(shù)軸求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,則實數(shù)a的值范圍是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案