A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
分析 已知{an}成為公比不等于1的等比數(shù)列,可得出A+B=0,推斷A+B=0是使{an}成為公比不等于1的等比數(shù)列的必要條件;數(shù)列{an}前n項和Sn=Aqn+B,A+B=0,得到⇒{an}成為公比不等于1的等比數(shù)列,可推斷A+B=0是使{an}成為公比不等于1的等比數(shù)列的充分條件.從而得出正確答案.
解答 解:(1)若{an}成為公比不等于1的等比數(shù)列,則
Sn=$\frac{{a}_{1}(1{-q}^{n})}{1-q}$=$\frac{{a}_{1}}{1-q}$-$\frac{{{a}_{1}q}^{n}}{1-q}$,比照Sn=Aqn+B,得
A=$\frac{{a}_{1}}{1-q}$,B=-$\frac{{a}_{1}}{1-q}$故A=-B,
若{an}為公比等于1的等比數(shù)列,
則:Sn=na1,比照Sn=Aqn+B,得
A=n,B=0,推不出A≠-B,不是必要條件,
(2)若已知:數(shù)列{an}前n項和Sn=Aqn+B,A=-B即A+B=0,則
a1=S1=Aq+B=A(q-1),
n>1時 an=Sn-Sn-1=aAqn+B-[Aqn-1+B]=Aqn-1(q-1),
⇒{an}成為公比不等于1的等比數(shù)列.
故A+B=0是使{an}成為公比不等于1的等比數(shù)列的充分不必要條件.
故選:A.
點評 本小題主要考查必要條件、充分條件與充要條件的判斷、等比數(shù)列等基礎(chǔ)知識,考查運(yùn)算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 真、假、真 | B. | 假、假、真 | C. | 真、真、假 | D. | 假、假、假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤2或x>3} | B. | {x|x≤-2或x>3} | C. | {x|x<2或x≥3} | D. | {x|x<-2或x≥3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,\frac{1}{2}})∪({1,+∞})$ | B. | $({-∞,\frac{1}{2}})∪({1,+∞})$ | C. | (0,1) | D. | $({0,\frac{1}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>3? | B. | i<4? | C. | i>4? | D. | i<5? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e | B. | 1 | C. | -1 | D. | -e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x+y-2=0 | B. | 2x-y-2=0 | C. | x+y-2=0 | D. | y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com