sin155°cos35°-cos25°cos235°=   
【答案】分析:利用誘導(dǎo)公式把要求的式子化為 sin25°cos35°+cos25°sin35°,再利用兩角和的正弦公式化為sin60°,從而得到結(jié)論.
解答:解:sin155°cos35°-cos25°cos235°=sin25°cos35°+cos25°cos55°
=sin25°cos35°+cos25°sin35°=sin(25°+35°)=sin60°=
故答案為
點(diǎn)評:本題主要考查誘導(dǎo)公式、兩角和差的正弦、余弦公式的應(yīng)用,注意公式的逆用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省寧波市八校高三(下)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

sin155°cos35°-cos25°cos235°=   

查看答案和解析>>

同步練習(xí)冊答案