已知函數(shù)f(x)=lnax-
x-a
x
(a≠0).
(Ⅰ)求此函數(shù)的單調(diào)區(qū)間及最值;
(Ⅱ)求證:a=1時,對于任意正整數(shù)n,均有1+
1
2
+
1
3
+…+
1
n
≥ln
en
n!
;
(Ⅲ)當a=1時,是否存在過點(1,-1)的直線與函數(shù)y=f(x)的圖象相切?若存在,有多少條?若不存在,說明理由.
分析:(I)由題意知a≠0,先對函數(shù)求導,分a>0,a<0討論函數(shù)的定義域及單調(diào)區(qū)間,從而確定最值.
(II)當a=1時由(I)知函數(shù)f(x)的定義域(0,+∞),在(0,1)是減函數(shù),[1,+∞)是增函數(shù),從而有f(x)≥f(1)?
1
x
≥ln
e
x
,分別把x=1,2,3…代入不等式相加可證
(III)假設存在滿足條件的直線與函數(shù)相切,根據(jù)導數(shù)的幾何意義,求出切線方程,結(jié)合導數(shù)的知識推導.
解答:(Ⅰ)解:由題意f′(x)=
x-a
x2
.(1分)
當a>0時,函數(shù)f(x)的定義域為(0,+∞),
此時函數(shù)在(0,a)上是減函數(shù),在(a,+∞)上是增函數(shù),fmin(x)=f(a)=lna2,無最大值.(3分)
當a<0時,函數(shù)f(x)的定義域為(-∞,0),
此時函數(shù)在(-∞,a)上是減函數(shù),在(a,0)上是增函數(shù),fmin(x)=f(a)=lna2,無最大值.(5分)
(Ⅱ)取a=1,由(1)知f(x)=lnx-
x-1
x
≥f(1)=0
,
1
x
≥1-lnx=ln
e
x
,
取x=1,2,3,,
1+
1
2
+
1
3
++
1
n
≥ln
en
n!
.(8分)
(Ⅲ)假設存在這樣的切線,設其中一個切點T(x0,lnx0-
x0-1
x0
)
,
切線方程:y+1=
x0-1
x02
(x-1)
,將點T坐標代入得:lnx0-
x0-1
x0
+1=
(x0-1)2
x02
,即lnx0+
3
x0
-
1
x02
-1=0
,①
g(x)=lnx+
3
x
-
1
x2
-1
,則g′(x)=
(x-1)(x-2)
x3
.(10分)
∵x>0,
∴g(x)在區(qū)間(0,1),(2,+∞)上是增函數(shù),在區(qū)間(1,2)上是減函數(shù),
故g(x)極大值=g(1)=1>0,g(x)極小值=g(2)=ln2+
1
4
>0.
g(
1
4
)=ln
1
4
+12-16-1=-ln4-3<0,
注意到g(x)在其定義域上的單調(diào)性,知g(x)=0僅在(
1
4
,1)
內(nèi)有且僅有一根
所以方程①有且僅有一解,故符合條件的切線有且僅有一條.(12分)
點評:本題考查了導數(shù)的應用:利用導數(shù)研究函數(shù)單調(diào)區(qū)間及求最值問題,而對不等式的證明問題,主要是結(jié)合函數(shù)的單調(diào)性,對于存在性問題,通常是先假設存在,由假設出發(fā)進行推導,若推出矛盾,說明假設錯誤,即不存在,反之說明存在.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案