已知函數(shù)f(x)=x3-2x2-4x-7,其導(dǎo)函數(shù)為f ′(x).則以下四個命題:
①f(x)的單調(diào)減區(qū)間是(,2);
②f(x)的極小值是-15;
③當a>2時,對任意的x>2且x≠a,恒有f(x)>f(a)+f ′(a)(x-a);
④函數(shù)f(x)有且只有一個零點.
其中真命題的個數(shù)為( )
A.1個 B.2個
C.3個 D.4個
科目:高中數(shù)學 來源: 題型:
設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1·cosx-an+2·sin x滿足f′=0.
(1)求數(shù)列{an}的通項公式;
(2)若bn=2,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)的導(dǎo)函數(shù)為f ′(x),且滿足f(x)=3x2+2xf ′(2),則f ′(5)=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f ′(x),且函數(shù)y=(1-x)f ′(x)的圖象如下圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(-2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(-2)
D.函數(shù)f(x)有極大值f(-2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
若函數(shù)f(x)=x3-ax2+(a-1)x+1在區(qū)間(1,4)上為減函數(shù),在區(qū)間(6,+∞)上為增函數(shù),試求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個區(qū)間,若存在x0∈D,使f(x0)=-x0,則稱x0是f(x)的一個“次不動點”.若函數(shù)f(x)=ax2-3x-a+在區(qū)間[1,4]上存在次不動點,則實數(shù)a的取值范圍是( )
A.(-∞,0) B.(0,)
C.[,+∞) D.(-∞,]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com