已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,為其前項(xiàng)和,且滿足,令,數(shù)列的前n項(xiàng)和為.

(1)求數(shù)列的通項(xiàng)公式及數(shù)列的前n項(xiàng)和為

(2)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說明理由.

 

 

 

 

 

 

 

【答案】

 解:(1)因?yàn)?sub>是等差數(shù)列,由,

又因?yàn)?sub>,所以,    ……2分

,

所以.      ……6分

(2)由(1)知,,    所以,

 若成等比數(shù)列,則,即.……8分

解法一:由,  可得,

所以,      ……12分

從而:,又,且,所以,此時(shí)

故可知:當(dāng)且僅當(dāng), 使數(shù)列中的成等比數(shù)列!16分

解法二:因?yàn)?sub>,故,即,……12分

從而:,(以下同上).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為,為其前項(xiàng)和,且滿足.?dāng)?shù)列滿足,為數(shù)列的前項(xiàng)和.

(1)求;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省“十!备呷谝淮温(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,, 為數(shù)列的前項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有

的值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省汕頭市高二10月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為,為其前項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前項(xiàng)和.

(1)求、

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有

的值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三4月教學(xué)質(zhì)量檢測(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分。已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為,為其前項(xiàng)和,且滿足

,.?dāng)?shù)列滿足為數(shù)列的前n項(xiàng)和.

(1)求、;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年深圳市高三第一次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分14分)

已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為為其前項(xiàng)和,且滿足

.?dāng)?shù)列滿足為數(shù)列的前n項(xiàng)和.

(1)求、

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有

的值;若不存在,請(qǐng)說明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案