已知數(shù)列{an}的前三項(xiàng)分別為a1=5,a2=6,a3=8,且數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+m=
1
2
(S2n+S2m)-(n-m)2
,其中m,n為任意正整數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)求滿足Sn2-
3
2
an+33=k2
的所有正整數(shù)k,n.
(1)在等式Sn+m=
1
2
(S2n+S2m)-(n-m)2
中,
分別令m=1,m=2,得
Sn+1=
1
2
(S2n+S2)-(n-1)2
,①
Sn+2=
1
2
(S2n+S4)-(n-2)2
,②
②-①,得an+2=2n-3+
S4-S2
2

在等式Sn+m=
1
2
(S2n+S2m)-(n-m)2
中,
令n=1,m=2,得
S3=
1
2
(S2+S4)-1
,
由題設(shè)知,S2=11,S3=19,
故S4=29,
所以an+2=2n+6,(n∈N*),
即an=2n+2,(n≥3,n∈N*),
又a2=6也適合上式,
an=
5,n=1
2n+2,n≥2
,即Sn=n2+3n+1,n∈N*
(2)記Sn2-
3
2
an+33=k2
,(*)
n=1時,無正整數(shù)k滿足等式(*)
n≥2時,等式(*)即為(n2+3n+1)2-3(n-10)=k2
①當(dāng)n=10時,k=131.
②當(dāng)n>10時,則k<n2+3n+1,
∵k2-(n2+3n)2=2n2+3n+31>0,
∴k>n2+3n,
從而n2+3n<k<n2+3n+1,
∵n,k∈N*,∴k不存在,從而無正整數(shù)k滿足等式(*).
③當(dāng)n<10時,則k>n2+3n+1,
∵k∈N*,∴k≥n2+3n+2,
從而(n2+3n+1)2-3(n-10)≥(n2+3n+2)2
即2n2+9n-27≤0,
∵n∈N*,∴n=1或2.
n=1時,k2=52,無正整數(shù)解;
n=2時,k2=145,無正整數(shù)解.
綜上所述,滿足等式(*)的n,k分別為n=10,k=131.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案