已知函數(shù),且定義域?yàn)椋?,2).
(1)求關(guān)于x的方程+3在(0,2)上的解;
(2)若是定義域(0,2)上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)若關(guān)于x的方程在(0,2)上有兩個(gè)不同的解,求k的取值范圍。
(1),+3即
當(dāng)時(shí),,此時(shí)該方程無(wú)解………………1分
當(dāng)時(shí),,原方程等價(jià)于:此時(shí)該方程的解為.
綜上可知:方程+3在(0,2)上的解為. ………………3分
(2),
………………4分
, ……………… 5分
可得:若是單調(diào)遞增函數(shù),則 ………………6分
若是單調(diào)遞減函數(shù),則 ,……………… 7分
綜上可知:是單調(diào)函數(shù)時(shí)的取值范圍為.………8分
(2)[解法一]:當(dāng)時(shí),,①
當(dāng)時(shí),,②
若k=0則①無(wú)解,②的解為故不合題意 ……………9分
若則①的解為,
(Ⅰ)當(dāng)時(shí),時(shí),方程②中
故方程②中一根在(1,2)內(nèi)另一根不在(1,2)內(nèi), ……………… 10分
設(shè),而則 又,
故,
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/82/b/1vw273.gif" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值
(2)判斷函數(shù)的單調(diào)性
(3)若對(duì)任意的,不等式恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題10分)已知函數(shù)是奇
函數(shù),當(dāng)x>0時(shí),有最小值2,且f (1).
(Ⅰ)試求函數(shù)的解析式;
(Ⅱ)函數(shù)圖象上是否存在關(guān)于點(diǎn)(1,0)對(duì)稱的兩點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)已知函數(shù)。(1)求不等式的解
集;(2)若不等式的解集為R,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com