某商家推出一款簡單電子游戲,彈射一次可以將三個相同的小球隨機彈到一個正六邊形的頂點與中心共七個點中的三個位置上(如圖),用S表示這三個球為頂點的三角形的面積.規(guī)定:當(dāng)三球共線時,S=0;當(dāng)S最大時,中一等獎,當(dāng)S最小時,中二等獎,其余情況不中獎,一次游戲只能彈射一次.
(Ⅰ)求甲一次游戲中能中獎的概率;
(Ⅱ)設(shè)這個正六邊形的面積是6,求一次游戲中隨機變量S的分布列及期望值.
考點:離散型隨機變量的期望與方差,古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(Ⅰ)由題意知這是隨機變量的等可能事件的概率問題,彈射一次可以將三個相同的小球隨機彈到一個正六邊形的頂點與中心共七個點中的三個位置上有
C
3
7
種方法,當(dāng)S最大時它的方法數(shù)有2種,當(dāng)S最小時有3種方法,由此能求出結(jié)果.
(Ⅱ)高駝個正六邊形的面積是一次游戲中隨機變量S的可能值為0,1,2,3,分別求出它們的概率,得分布列,進而可求出期望值.
解答: 解:(Ⅰ)由題意知,
彈射一次可以將三個相同的小球隨機彈到一個正六邊形的頂點
與中心共七個點中的三個位置上有
C
3
7
種方法,
當(dāng)S最大時它的方法數(shù)有2種,
當(dāng)S最小時有3種方法,
∴甲中獎的概率為P=
3+2
C
3
7
=
1
7

(Ⅱ)由題設(shè)知S的可能取值為0,1,2,3,
P(S=0)=
3
35
,P(S=1)=
18
35
,
P(S=2)=
12
35
,P(S=3)=
2
35
,
∴S的分布列為:
 S  0  1  2  3
 P  
3
35
 
18
35
 
12
35
 
2
35
ES=0×
3
35
+1×
18
35
+2×
12
35
+3×
2
35
=
48
35
點評:本小題主要考查相古典概率、隨機變量的分布列與均值(數(shù)學(xué)期望)等知識,考查或然與必然的數(shù)學(xué)思想方法,以及數(shù)據(jù)處理能力、運算求解能力和應(yīng)用意識
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,a1=tan225°,a5=13a1,設(shè)Sn為數(shù)列{(-1)nan}的前n項和,則S2014=( 。
A、2014B、-2014
C、3021D、-3021

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x≥1
y≥0
2≤x+2y≤4
,則x2+y2的取值范圍是( 。
A、[
4
5
,
16
5
]
B、[
5
4
,16]
C、[
5
2
,4]
D、[
2
5
5
4
5
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
6
-2x)-2sin2x+1(x∈R)
,
(1)求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點(A,
1
2
),b,a,c
成等差數(shù)列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+a,g(x)=
1
4
(x2+3),若g(f(x))=x2+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x4+x2-1,g(x)=ax3+x2+b(x∈R),其中a,b∈R.
(Ⅰ)若曲線y=f(x)與y=g(x)在點(1,1)處相交且有相同的切線,求a,b的值;
(Ⅱ)設(shè)F(x)=f(x)+g(x),若對于任意的a∈[-2,2],函數(shù)y=F(x)在區(qū)間[-1,1]上的值恒為負數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,己知a1=2,a4=16.
(1)求數(shù)列{an}的通項公式;
(2)若a3,a5分別為等差數(shù)列{bn}的第3項和第5項,試求數(shù)列{bn}的通項公式及數(shù)列{anbn}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一列火車從北京西站開往石家莊,全程277km,火車出發(fā)10min開出了13km后,以120km/h的速度勻速行駛. 
(1)試寫出火車從出發(fā)開始行駛的路程s(km)與勻速行駛的時間t(h)之間的關(guān)系式.
(2)求火車離開北京2h后行駛的路程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的焦點、實軸端點恰好是橢圓
x2
25
+
y2
16
=1的長軸的端點、焦點,則雙曲線C的方程是
 

查看答案和解析>>

同步練習(xí)冊答案