已知雙曲線與圓相切,過的一個(gè)焦點(diǎn)且斜率為的直線也與圓相切.
(Ⅰ)求雙曲線的方程;      
(Ⅱ)是圓上在第一象限的點(diǎn),過且與圓相切的直線的右支交于、兩點(diǎn),的面積為,求直線的方程.
解:(Ⅰ)∵雙曲線與圓相切,∴ ,         ………………2分
的一個(gè)焦點(diǎn)且斜率為的直線也與圓相切,得,既而
故雙曲線的方程為      ………………………………5分
(Ⅱ)設(shè)直線,,,
圓心到直線的距離,由………6分
 得    
              ……………8分


的面積,∴ …………10分
,     解得,
∴直線的方程為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知三點(diǎn)(-2,0)、(2,0)。
(1)求以、為焦點(diǎn)且過點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)求以為頂點(diǎn)且以(1)中橢圓左、右頂點(diǎn)為焦點(diǎn)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知中心在坐標(biāo)軸原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(1,),且點(diǎn)F(-1,0)為其左焦點(diǎn).
(I)求橢圓C的離心率;
(II)試判斷以AF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓)與雙曲線,)有相同的焦點(diǎn),若、的等比中項(xiàng),的等差中項(xiàng),則橢圓的離心率是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上的點(diǎn)到直線的最大距離是    (     )
A.3B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.為雙曲線上的一點(diǎn),為一個(gè)焦點(diǎn),以為直徑的圓與圓的位置關(guān)系是
內(nèi)切      內(nèi)切或外切       .外切       .相離或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知方向向量為v=(1,)的直線l過點(diǎn)(0,-2)和橢圓C:
的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;(Ⅱ)是否存在過點(diǎn)E(-2,0)的直線m交橢圓C于點(diǎn)M、N,滿足cot∠MON ≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存
在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于)兩點(diǎn),且
(1)求該拋物線的方程;
(2)為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左右焦點(diǎn)分別為,P為橢圓上一點(diǎn),且
,則橢圓的離心率e=________

查看答案和解析>>

同步練習(xí)冊(cè)答案