已知?jiǎng)狱c(diǎn)P到定直線l:x=2的距離與點(diǎn)P到定點(diǎn)F之比為
(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過原點(diǎn)O作直線AB交(1)中軌跡C于點(diǎn)A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過M作圓O的切線,交直線l于點(diǎn)Q,問MF與OQ是否始終保持垂直關(guān)系?
【答案】分析:(1)設(shè)出點(diǎn)P,利用兩點(diǎn)間的距離公式分別表示出P到定直線的距離和到點(diǎn)F的距離的比,建立方程求得x和y的關(guān)系式,即P的軌跡方程.
(2)設(shè)出N,A,則B的坐標(biāo)可知,代入圓錐曲線的方程相減后,可求得k1•k2=-,證明原式.
(3)設(shè)M(x,y),則可表示出切線方程,與x=2聯(lián)立求得Q的坐標(biāo)表達(dá)式,則可分別表示出,進(jìn)而利用向量的運(yùn)算法則求得結(jié)果為0,判斷出
解答:解:(1)設(shè)點(diǎn)P(x,y),依題意,有

整理,得
所以動(dòng)點(diǎn)P的軌跡C的方程為

(2)由題意:設(shè)N(x1,y1),A(x2,y2),
則B(-x2,-y2
k1•k2==
=為定值.

(3)M(x,y),則切線MQ的方程為:xx+yy=4
得Q
,=
=
所以:即MF與OQ始終保持垂直關(guān)系
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的關(guān)系.當(dāng)涉及直線的斜率的時(shí)候,點(diǎn)差法是常用的方法,能把直線的斜率和曲線方程,交點(diǎn)坐標(biāo),交點(diǎn)的中點(diǎn)坐標(biāo)等向聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P到定直線l:x=2
2
的距離與點(diǎn)P到定點(diǎn)F(
2
,0)
之比為
2

(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過原點(diǎn)O作直線AB交(1)中軌跡C于點(diǎn)A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過M作圓O的切線,交直線l于點(diǎn)Q,問MF與OQ是否始終保持垂直關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)P到定直線l:x=2
2
的距離與點(diǎn)P到定點(diǎn)F(
2
,0)
之比為
2

(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過原點(diǎn)O作直線AB交(1)中軌跡C于點(diǎn)A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過M作圓O的切線,交直線l于點(diǎn)Q,問MF與OQ是否始終保持垂直關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年度江蘇省連云港市贛榆高級(jí)中學(xué)高三暑期檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P到定直線l:x=2的距離與點(diǎn)P到定點(diǎn)F之比為
(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過原點(diǎn)O作直線AB交(1)中軌跡C于點(diǎn)A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過M作圓O的切線,交直線l于點(diǎn)Q,問MF與OQ是否始終保持垂直關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P到定直線l:x=2的距離與點(diǎn)P到定點(diǎn)F之比為
(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過原點(diǎn)O作直線AB交(1)中軌跡C于點(diǎn)A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過M作圓O的切線,交直線l于點(diǎn)Q,問MF與OQ是否始終保持垂直關(guān)系?

查看答案和解析>>

同步練習(xí)冊(cè)答案