,函數(shù).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)無零點,求實數(shù)的取值范圍。

 

【答案】

1)遞增區(qū)間;遞減區(qū)間

(2)

【解析】本試題主要是考查哦導數(shù)在研究函數(shù)中的運用。

(1)第一問先求解定義域,然后求導數(shù),令導數(shù)大于零或者小于零得到單調(diào)區(qū)間,進而得到結論。

(2)根據(jù)函數(shù)無零點,說明圖像與x軸無交點,那么分析函數(shù)的性質(zhì),研究極值的符號來得到參數(shù)的范圍的求解。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)是定義域為(-∞,0)∪(0,+∞)上的奇函數(shù)且在(-∞,0)上為增函數(shù).
(1)若m•n<0,m+n≤0,求證:f(m)+f(n)≤0;
(2)若f(1)=0,解關于x的不等式f(x2-2x-2)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=kax-a-x(a>0且a≠1)是定義域R上的奇函數(shù).
(1)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;
(2)若f(1)=
32
,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇三模)已知函數(shù)f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導函數(shù).
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關于x的方程f(x)=|f′(x)|;
(3)設函數(shù)g(x)=
f(x),f(x)≥f(x)
f(x),f(x)<f(x)
,求g(x)在x∈[2,4]時的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆吉林省高二下學期3月月考數(shù)學(解析版) 題型:解答題

,函數(shù)

(1)若函數(shù)的最小值為-2,求a的值;

(2)若函數(shù)上是單調(diào)減函數(shù),求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

,函數(shù)

(1)若,求函數(shù)在區(qū)間上的最大值;

(2)若,寫出函數(shù)的單調(diào)區(qū)間(不必證明);

(3)若存在,使得關于的方程有三個不相等的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案