已知橢圓的中心為原點(diǎn),點(diǎn)是它的一個(gè)焦點(diǎn),直線過(guò)點(diǎn)與橢圓交于兩點(diǎn),且當(dāng)直線垂直于軸時(shí),.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得在直線上可以找到一點(diǎn),滿(mǎn)足為正三角形.如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.
解:(Ⅰ)設(shè)橢圓的方程為:,則…①
當(dāng)垂直于軸時(shí),兩點(diǎn)坐標(biāo)分別是和,
,則,即.………②
由①,②消去,得.
或(舍去).
當(dāng)時(shí),.
因此,橢圓的方程為.
(Ⅱ)設(shè)存在滿(mǎn)足條件的直線.
(1) 當(dāng)直線垂直于軸時(shí),由(Ⅰ)的解答可知,焦點(diǎn)到直線
的距離為,此時(shí)不滿(mǎn)足.
因此,當(dāng)直線垂直于軸時(shí)不滿(mǎn)足條件.
(2)當(dāng)直線不垂直于軸時(shí),設(shè)直線的斜率為,則直線的方程為.
由,
設(shè)兩點(diǎn)的坐標(biāo)分別為和,則
,.
.
又設(shè)的中點(diǎn)為,則.
當(dāng)為正三角形時(shí),直線的斜率為.
,
.
當(dāng)為正三角形時(shí),,即=,
解得,.
因此,滿(mǎn)足條件的直線存在,且直線的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
| ||
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
3 |
y2 |
4 |
y2 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(重慶卷解析版) 題型:解答題
已知橢圓的中心為原點(diǎn),長(zhǎng)軸在 軸上,上頂點(diǎn)為 ,左、右焦點(diǎn)分別為 ,線段 的中點(diǎn)分別為 ,且△是面積為4的直角三角形。(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò) 作直線交橢圓于,,求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(重慶卷解析版) 題型:解答題
已知橢圓的中心為原點(diǎn),長(zhǎng)軸在 軸上,上頂點(diǎn)為 ,左、右焦點(diǎn)分別為 ,線段 的中點(diǎn)分別為 ,且△是面積為4的直角三角形。(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;(Ⅱ)過(guò) 作直線交橢圓于,,求△的面積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com