如圖所示,空間四邊形ABCD中,AB,BC,BD兩兩垂直,AB=BC=2,E為AC的中點(diǎn),異面直線AD與BE所成角的大小為arccos,求二面角D-AC-B的大小.

答案:
解析:

  解:以B為空間直角坐標(biāo)系的原點(diǎn)建立如圖的直角坐標(biāo)系,

  解:以B為空間直角坐標(biāo)系的原點(diǎn)建立如圖的直角坐標(biāo)系,

  則B(0,0,0),A(0,2,0),C(2,0,0),E(1,1,0),設(shè)D(0,0,t).

  則=(0,-2,t),=(1,1,0)

  所以,所以,所以t=4或-4(舍),

  又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60B1/0003/0290/9697f57d25233bfca2ad2206b78609b4/C/Image2277.gif">=(2,-2,0),=(1,1,-t),所以·=2+(-2)=0.

  所以DE⊥AC,又BE⊥AC,所以∠DEB為二面角D-AC-B的平面角,所以tan∠DEB==2

  所以二面角D-AC-B的大小為arctan2


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

如圖所示,已知圓的方程是(x-1)2+y2=1,四邊形PABQ為該圓內(nèi)接梯形,底邊AB為圓的直徑且在x軸上,以A,B為焦點(diǎn)的橢圓C過P,Q兩點(diǎn).

(1)若直線QP與橢圓C的右準(zhǔn)線相交于點(diǎn)M,求點(diǎn)M的軌跡方程;

(2)當(dāng)梯形PABQ周長最大時(shí),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

如圖所示,在直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),E是B1C的中點(diǎn).

(1)求cos().

(2)在線段AA1上是否存在點(diǎn)F,使CF⊥平面B1DF?若存在,求出||;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

如圖所示,橢圓方程為=1(a>b>0),A,P,F(xiàn)分別為左頂點(diǎn),上頂點(diǎn),右焦點(diǎn),E為x軸正方向上一點(diǎn),且||,||,||成等比數(shù)列.又點(diǎn)N滿足(),PF的延長線與橢圓的交點(diǎn)為Q,過Q與x軸平行的直線與PN的延長線交于M.

(1)求證:··

(2)若=2,且||=,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

如圖所示,某電子器件是由三個(gè)電阻組成的回路,其中共有六個(gè)焊接點(diǎn)A,B,C,D,E,F(xiàn),如果某個(gè)焊接點(diǎn)脫落,整個(gè)電路就會(huì)不通.

(1)求因焊接點(diǎn)脫落致使電路不通的所有不同的脫落種數(shù).

(2)每個(gè)焊接點(diǎn)脫落的概率均是,現(xiàn)在發(fā)現(xiàn)電路不通了,那么至少有兩個(gè)焊接點(diǎn)脫落的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007屆潛山中學(xué)理復(fù)(一、二)數(shù)學(xué)周考試卷 題型:044

解答題

如圖所示,已知A、B、C是長軸長為4的橢圓上的三點(diǎn),點(diǎn)A是長軸的一個(gè)端點(diǎn),BC過橢圓中心O,且,|BC|=2|AC|.

(1)

建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;

(2)

如果橢圓上有兩點(diǎn)P、Q,使∠PCQ的平分線垂直于AO,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案