設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( )
A.
B.
C.
D.
【答案】分析:利用函數(shù)極小值的意義,可知函數(shù)f(x)在x=-2左側(cè)附近為減函數(shù),在x=-2右側(cè)附近為增函數(shù),從而可判斷當(dāng)x<0時(shí),函數(shù)y=xf′(x)的函數(shù)值的正負(fù),從而做出正確選擇
解答:解:∵函數(shù)f(x)在x=-2處取得極小值,∴f′(-2)=0,
且函數(shù)f(x)在x=-2左側(cè)附近為減函數(shù),在x=-2右側(cè)附近為增函數(shù),
即當(dāng)x<-2時(shí),f′(x)<0,當(dāng)x>-2時(shí),f′(x)>0,
從而當(dāng)x<-2時(shí),y=xf′(x)>0,當(dāng)-2<x<0時(shí),y=xf′(x)<0,
對照選項(xiàng)可知只有C符合題意
故選 C
點(diǎn)評:本題主要考查了導(dǎo)函數(shù)與原函數(shù)圖象間的關(guān)系,函數(shù)極值的意義及其與導(dǎo)數(shù)的關(guān)系,篩選法解圖象選擇題,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在R上滿足f(3+x)=f(3-x),f(8+x)=f(8-x),且在閉區(qū)間[0,8]上只有f(1)=f(5)=f(7)=0.
(1)求證函數(shù)f(x)是周期函數(shù);
(2)求函數(shù)f(x)在閉區(qū)間[-10,0]上的所有零點(diǎn);
(3)求函數(shù)f(x)在閉區(qū)間[-2012,2012]上的零點(diǎn)個(gè)數(shù)及所有零點(diǎn)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)設(shè)函數(shù)f(x)在R上是可導(dǎo)的偶函數(shù),且滿足f (x-1)=-f (x+1),則曲線y=f (x)在點(diǎn)x=10處的切線的斜率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),且2f(x)+xf′(x)<0,下面的不等式在R上恒成立的是( 。
A、f(x)>0B、f(x)<0C、f(x)>xD、f(x)<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),若2f(x)+x?f′(x)<0恒成立,下列說法正確的是( 。
A、函數(shù)x2f(x)有最小值0B、函數(shù)x2f(x)有最大值0C、函數(shù)x2f(x)在R上是增函數(shù)D、函數(shù)x2f(x)在R上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊答案