已知函數(shù)

;

②f(x)=5cosx;

③f(x)=5ex;

④f(x)=5lnx,其中對于f(x)定義域內(nèi)的任意一個自變量x1,都存在唯一的自變量x2,使成立的函數(shù)為

[  ]
A.

①③④

B.

②④

C.

①③

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有意義.對于給定的正數(shù)k,已知函數(shù)fk(x)=
f(x),f(x)≤k
k,f(x)>k
,取函數(shù)f(x)=3-x-e-x.若對任意的x∈(-∞,+∞),恒有f1(x)=f(x),則k的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)(x-1)f(
x+1x-1
)+f(x)=x
,其中x≠1,求函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-c
x+1
,其中c為常數(shù),且函數(shù)f(x)圖象過原點.
(1)求c的值;
(2)證明函數(shù)f(x)在[0,2]上是單調(diào)遞增函數(shù);
(3)已知函數(shù)g(x)=f(ex)-
1
3
,求函數(shù)g(x)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)h(x)=
f(x)
g(x)
,x∈(0,3],g(x)≠0
,對任意x∈(0,3],f(x)g′(x)>f′(x)g(x)恒成立,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)已知函數(shù),y=f(x)=-x3+ax2+b(a,b∈R)
(Ⅰ)要使f(x)在(0,1)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)當(dāng)a>0時,若函數(shù)f(x)的極小值和極大值分別為1、
31
27
,試求函數(shù)y=f(x)的解析式;
(Ⅲ)若x∈[0,1]時,y=f(x)圖象上任意一點處的切線傾斜角為θ,當(dāng)0≤θ≤
π
4
.時,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案