已知集合A={x|
1
2
2x-4<4}
,B={x|x2-11x+18<0}.
(Ⅰ)分別求?R(A∩B),(?RB)∪A;
(Ⅱ)已知C={x|a<x<a+1},若C⊆B,求實(shí)數(shù)a的取值集合.
由集合A中的不等式變形得:2-1≤2x-4<22,即-1≤x-4<2,
解得:3≤x<6,即A=[3,6),
由集合B中的不等式x2-11x+18<0,變形得:(x-2)(x-9)<0,
解得:2<x<9,即B=(2,9),
(Ⅰ)∵A∩B=[3,6),全集U=R,
∴?R(A∩B)=(-∞,3)∪[6,+∞);
∵?RB=(-∞,2]∪[9,+∞),
則(?RB)∪A=(-∞,2]∪[3,6)∪[9,+∞);
(Ⅱ)∵C⊆B,C={x|a<x<a+1}=(a,a+1),
a≥2
a+1≤9
,
解得:2≤a≤8,
則a的范圍為[2,8].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)整數(shù)m是從不等式x2-2x-8≤0的整數(shù)解的集合S中隨機(jī)抽取的一個元素,記隨機(jī)變量ξ=m2,則ξ的數(shù)學(xué)期望Eξ=
 

(文)已知集合A={x|-1<x<5,x∈Z},集合B={x|
x-14-x
>0,x∈Z}
.在集合A中任取一個元素x,則事件“x∈A∩B”發(fā)生的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1-m≤x≤1+m(m∈R)},集合B={x|x≥2}.
(1)若m=2,求A∩B;
(2)若全集U=R,且A⊆CUB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<x<3},B={x|2a<x<a+2},若A∩B=B,則a的范圍為
[
1
2
,1]∪[2,+∞)
[
1
2
,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1≤x<4},B={x|(x-a)(x-3a)=0}.
(1)若B?A,求實(shí)數(shù)a的取值范圍;
(2)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知集合A={x|1≤x≤2},B={x||x-a|≤1},若A∩B=A,則實(shí)數(shù)a的取值范圍為
[1,2]
[1,2]

查看答案和解析>>

同步練習(xí)冊答案