是兩個實數(shù),則“中至少有一個數(shù)大于1”是“”成立的( )

A.充分非必要條件 B.必要非充分條件

C.充分必要條件 D.既非充分又非必要條件

D

【解析】

試題分析:若x=1.5,y=0.5則 不成立所以“中至少有一個數(shù)大于1”,不能得到“”.故充分性不成立;令x=-2,y=-2,則成立,“中至少有一個數(shù)大于1”不成立.所以必要性不成立.故選D.

考點:充要條件

考點分析: 考點1:必要條件、充分條件與充要條件的判斷 【知識點的認識】正確理解和判斷充分條件、必要條件、充要條件和非充分非必要以及原命題、逆命題否命題、逆否命題的概念是本節(jié)的重點;掌握邏輯推理能力和語言互譯能力,對充要條件概念本質(zhì)的把握是本節(jié)的難點.
1.充分條件:對于命題“若p則q”為真時,即如果p成立,那么q一定成立,記作“p?q”,稱p為q的充分條件.意義是說條件p充分保證了結(jié)論q的成立,換句話說要使結(jié)論q成立,具備條件p就夠了當然q成立還有其他充分條件.如p:x≥6,q:x>2,p是q成立的充分條件,而r:x>3,也是q成立的充分條件.
必要條件:如果q成立,那么p成立,即“q?p”,或者如果p不成立,那么q一定不成立,也就是“若非p則非q”,記作“¬p?¬q”,這是就說條件p是q的必要條件,意思是說條件p是q成立的必須具備的條件.
充要條件:如果既有“p?q”,又有“q?p”,則稱條件p是q成立的充要條件,或稱條件q是p成立的充要條件,記作“p?q”.
2.從集合角度看概念:
如果條件p和結(jié)論q的結(jié)果分別可用集合P、Q 表示,那么
①“p?q”,相當于“P?Q”.即:要使x∈Q成立,只要x∈P就足夠了--有它就行.
②“q?p”,相當于“P?Q”,即:為使x∈Q成立,必須要使x∈P--缺它不行.
③“p?q”,相當于“P=Q”,即:互為充要的兩個條件刻畫的是同一事物.
3.當命題“若p則q”為真時,可表示為,則我們稱p為q的充分條件,q是p的必要條件.這里由,得出p為q的充分條件是容易理解的.但為什么說q是p的必要條件呢?事實上,與“”等價的逆否命題是“”.它的意義是:若q不成立,則p一定不成立.這就是說,q對于p是必不可少的,所以說q是p的必要條件.
4.“充要條件”的含義,實際上與初中所學的“等價于”的含義完全相同.也就是說,如果命題p等價于命題q,那么我們說命題p成立的充要條件是命題q成立;同時有命題q成立的充要條件是命題p成立.
【解題方法點撥】
1.借助于集合知識加以判斷,若P?Q,則P是Q的充分條件,Q是的P的必要條件;若P=Q,則P與Q互為充要條件.
2.等價法:“P?Q”?“¬Q?¬P”,即原命題和逆否命題是等價的;原命題的逆命題和原命題的否命題是等價的.
3.對于充要條件的證明,一般有兩種方法:其一,是用分類思想從充分性、必要性兩種情況分別加以證明;其二,是逐步找出其成立的充要條件用“?”連接.
【命題方向】
充要條件主要是研究命題的條件與結(jié)論之間的邏輯關(guān)系,它是中學數(shù)學最重要的數(shù)學概念之一,它是今后的高中乃至大學數(shù)學推理學習的基礎(chǔ).在每年的高考中,都會考查此類問題. 試題屬性
  • 題型:
  • 難度:
  • 考核:
  • 年級:
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014-2015學年安徽省馬鞍山市高二上學期期末考試理科數(shù)學試卷(解析版) 題型:選擇題

空間四邊形中,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年陜西省寶雞市九校高三聯(lián)合檢測理科數(shù)學試卷(解析版) 題型:選擇題

已知命題:存在,曲線為雙曲線;命題:的解集是.給出下列結(jié)論中正確的有( )

①命題“”是真命題;

②命題“且()”是真命題;

③命題“()或”為真命題;

④命題“()或()”是真命題.

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年江西省吉安市高三上學期第二次階段考試文科數(shù)學試卷(解析版) 題型:解答題

(12分)已知函數(shù).

(1)求函數(shù)的最小正周期、最大值及取最大值時自變量的取值集合;

(2)在△ABC中,角A,B,C的對邊分別是a,b,c;若a,b,c成等比數(shù)列,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年江西省吉安市高三上學期第二次階段考試文科數(shù)學試卷(解析版) 題型:選擇題

已知雙曲線的兩個焦點分別為,,P是雙曲線上的一點,,則雙曲線方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年江西省吉安市高三上學期第二次階段考試理科數(shù)學試卷(解析版) 題型:解答題

設函數(shù).

(1)若時,解不等式;

(2)若函數(shù)有最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年江西省吉安市高三上學期第二次階段考試理科數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列的前n項和為.

(1)求;

(2)求證:數(shù)列是等比數(shù)列;

(3)求.

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年河北省唐山市高三第一次模擬考試文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分10分)選修4-5:不等式選講

已知函數(shù).

(Ⅰ)當時,解不等式

(Ⅱ)若的最小值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年河北省唐山市高三第一次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題

已知,則( )

A. B. C.或0 D.或0

查看答案和解析>>

同步練習冊答案