如圖(1),等腰直角三角形ABC的底邊AB=4,點D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(Ⅰ)求證:PB⊥DE;
(Ⅱ)若PE⊥BE,直線PD與平面PBC所成的角為30°,求PE長.
【答案】分析:(I)根據(jù)翻折后DE仍然與BE、PE垂直,結(jié)合線面垂直的判定定理可得DE⊥平面PEB,再由線面垂直的性質(zhì)可得PB⊥DE;
(II)分別以DE、BE、PE所在直線為x軸、y軸、z軸,建立如圖所示空間直角坐標(biāo)系.設(shè)PE=a,可得點B、D、C、P關(guān)于a的坐標(biāo)形式,從而得到向量、坐標(biāo),利用垂直向量數(shù)量積為0的方法建立方程組,解出平面PCD的一個法向量為=(1,1,),由PD與平面PBC所成的角為30°和向量的坐標(biāo),建立關(guān)于參數(shù)a的方程,解之即可得到線段PE的長.
解答:解:(Ⅰ)∵DE⊥AB,∴DE⊥BE,DE⊥PE,….(2分)
∵BE∩PE=E,∴DE⊥平面PEB,
又∵PB?平面PEB,∴BP⊥DE;                      ….(4分)
(Ⅱ)∵PE⊥BE,PE⊥DE,DE⊥BE,
∴分別以DE、BE、PE所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系(如圖),…(5分)
設(shè)PE=a,則B(0,4-a,0),D(a,0,0),C(2,2-a,0),
P(0,0,a),…(7分)
可得,,…(8分)
設(shè)面PBC的法向量,
令y=1,可得x=1,z=
因此是面PBC的一個法向量,…(10分)   
,PD與平面PBC所成角為30°,…(12分)
,即,…(11分)
解之得:a=,或a=4(舍),因此可得PE的長為.…(13分)
點評:本題給出平面圖形的翻折,求證線面垂直并在已知線面角的情況下求線段PE的長,著重考查了線面垂直的判定與性質(zhì)和利用空間向量研究直線與平面所成角的求法等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•豐臺區(qū)二模)如圖(1),等腰直角三角形ABC的底邊AB=4,點D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(Ⅰ)求證:PB⊥DE;
(Ⅱ)若PE⊥BE,直線PD與平面PBC所成的角為30°,求PE長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三開學(xué)檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1),等腰直角三角形的底邊,點在線段上,,現(xiàn)將沿折起到的位置(如圖(2)).

(Ⅰ)求證:;

(Ⅱ)若,直線與平面所成的角為,求長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三開學(xué)檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1),等腰直角三角形的底邊,點在線段上,,現(xiàn)將沿折起到的位置(如圖(2)).

(Ⅰ)求證:;

(Ⅱ)若,直線與平面所成的角為,求長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆陜西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1)是等腰直角三角形,其中,分別為 的中點,將沿折起,點的位置變?yōu)辄c,已知點在平面上的射影的中點,如圖(2)所示.

(Ⅰ)求證:;

(Ⅱ)求三棱錐的體積.

 

查看答案和解析>>

同步練習(xí)冊答案