18.若角α的終邊經(jīng)過(guò)點(diǎn)P(1,$\sqrt{3}$),則cosα+tanα的值為( 。
A.$\frac{{1+2\sqrt{3}}}{2}$B.$\frac{{-1+\sqrt{3}}}{2}$C.$\frac{{1+\sqrt{3}}}{2}$D.$\frac{{-1+2\sqrt{3}}}{2}$

分析 由條件利用本題主要考查任意角的三角函數(shù)的定義,求得cosα、tanα 的值,可得cosα+tanα 的值.

解答 解:∵角α的終邊經(jīng)過(guò)點(diǎn)P(1,$\sqrt{3}$),x=1,y=$\sqrt{3}$,r=|OP|=2,
∴cosα=$\frac{x}{r}$=$\frac{1}{2}$,tanα=$\frac{y}{x}$=$\sqrt{3}$,
那么cosα+tanα=$\frac{1+2\sqrt{3}}{2}$,
故選A.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列各項(xiàng)中,值等于$\frac{1}{2}$的是( 。
A.cos45°cos15°+sin45°sin15°B.$\sqrt{\frac{{1-cos\frac{π}{6}}}{2}}$
C.cos2$\frac{π}{12}$-sin2$\frac{π}{12}$D.$\frac{{tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,直三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)都在半徑為1的半球面上,AB=AC,側(cè)面BCC1B1是半球底面圓的內(nèi)接正方形,則側(cè)面ABB1A1的面積為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知定義在R上的函數(shù)f(x)是增函數(shù),且f(1)=1,則使得f(3x-8)>1成立的x的取值范圍是( 。
A.(-∞,2)B.(-∞,0)C.$({\frac{1}{3},1})$D.(2.+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ln(x+a)-x2-x在點(diǎn)x=0處取得極值.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若關(guān)于x的方程f(x)=-$\frac{5}{2}$x+b在區(qū)間[0,2]上有兩個(gè)不等實(shí)根,求b的取值范圍;
(Ⅲ)證明:對(duì)于任意的正整數(shù)n,不等式($\frac{n+1}{n}$)${\;}^{{n}^{2}}$<en+1都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=cos(?x-$\frac{π}{3}$)-sin($\frac{π}{2}$-?x).
(I)求f(x)的最小值
(II)若函數(shù)y=f(x)圖象的兩個(gè)相鄰的對(duì)稱軸之間的距離為$\frac{π}{2}$,求其單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.“m>0,n<0”是“方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示雙曲線”的( 。
A.必要但不充分條件B.充分但不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知命題p:x2-8x-20≤0,q:1-a≤x≤1+a,若p是q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)數(shù)列{an}為等差數(shù)列,且a3=5,a5=9,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn+bn=2.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=$\frac{a_n}{b_n}$(n∈N*),Tn為數(shù)列{cn}的前n項(xiàng)和,求Tn;
(Ⅲ)若dn=$\frac{{{T_{n+2}}-3}}{{2({T_{n+1}}-3)}}$(n∈N*),求dn的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案