(本題滿分8分)將圓心角為1200,面積為3的扇形,作為圓錐的側(cè)面,求圓錐的表面積和體積.

 

【答案】

,   

【解析】設(shè)扇形的半徑為R,圓心角為,弧長(zhǎng)為,面積為s;圓錐的底面半徑為r,高為h,表面積為S,體積為V,

 (4分)     (8分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個(gè)點(diǎn)M(x,y)的橫坐標(biāo)乘2,縱坐標(biāo)乘4,變到點(diǎn)M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與原點(diǎn)重合,極軸與x軸的正半軸重合.若曲線C1的極坐標(biāo)方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
x=1-
3
t
y=t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)直線?上有一定點(diǎn)P(1,0),曲線C1與?交于M,N兩點(diǎn),求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年新疆烏魯木齊地區(qū)高三第一次診斷性測(cè)驗(yàn)文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)選修4   -4 :坐標(biāo)系與參數(shù)方程

將圓上各點(diǎn)的縱坐標(biāo)壓縮至原來(lái)的,所得曲線記作C;將直線3x-2y-8=0

繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°所得直線記作l

.(I)求直線l與曲線C的方程;

(II)求C上的點(diǎn)到直線l的最大距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案