年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆湖北省天門市高三天5月模擬理科數(shù)學(xué)試題 題型:解答題
已知數(shù)列{an},且x=是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一個(gè)極值點(diǎn).?dāng)?shù)列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=2(1-),當(dāng)t=2時(shí),數(shù)列{bn}的前n項(xiàng)和為Sn,求使Sn>2010的n的最小值;
(3)若cn=,證明:( n∈N﹡).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高一期中考試文科數(shù)學(xué)試卷A卷(解析版) 題型:解答題
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省高二上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)已知函數(shù)=,,,為常數(shù)。
(1)若函數(shù)在=1處有極值10,求實(shí)數(shù),的值;
(2)若=0,(I)方程=2在∈[-4,4]上恰有3個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;(II)不等式+2≥0對(duì)∈[1,4]恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門市高三天5月模擬理科數(shù)學(xué)試題 題型:解答題
已知數(shù)列{an},且x=是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一個(gè)極值點(diǎn).?dāng)?shù)列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=2(1-),當(dāng)t=2時(shí),數(shù)列{bn}的前n項(xiàng)和為Sn,求使Sn>2010的n的最小值;
(3)若cn=,證明:( n∈N﹡).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com