12.設(shè)α,β是兩個(gè)不同的平面,l,m是兩條不同的直線,且l?α,m?β下面命題正確的是(  )
A.若l∥β,則α∥βB.若α⊥β,則l⊥mC.若l⊥β,則α⊥βD.若α∥β,則l∥m

分析 對(duì)4個(gè)命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:對(duì)于A,若l∥β,則α∥β或α,β相交,不正確;
對(duì)于B,若α⊥β,則l、m位置關(guān)系不定,不正確;
對(duì)于C,根據(jù)平面與平面垂直的判定,可知正確;
對(duì)于D,α∥β,則l、m位置關(guān)系不定,不正確.
故選C.

點(diǎn)評(píng) 本題考查了空間線面、面面平行和垂直關(guān)系,面面平行的判定定理,線面垂直的定義及其應(yīng)用,空間想象能力

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知關(guān)于x的二次函數(shù)f(x)=ax2-2bx+1,設(shè)點(diǎn)(a,b)是區(qū)域$\left\{\begin{array}{l}x+y-2≤0\\ x+1≥0\\ y+1≥0\end{array}\right.$內(nèi)的隨機(jī)點(diǎn),則函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{8}$C.$\frac{7}{16}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若直線經(jīng)過(guò)兩點(diǎn)A(m,2),B(-m,2m-1)且傾斜角為45°,則m的值為( 。
A.$\frac{3}{4}$B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知P是橢圓$\frac{x^2}{5}+\frac{y^2}{4}=1$上一點(diǎn),F(xiàn)1和F2是焦點(diǎn),若$∠{F_1}P{F_2}={60^0}$,則△PF1F2的面積為( 。
A.$5\sqrt{3}$B.$4\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知M是拋物線C:y2=2px(p>0)上一點(diǎn),F(xiàn)是拋物線的焦點(diǎn),∠MFx=60°且|FM|=4.
(I)求拋物線C的方程;
(II)已知D(-1,0),過(guò)F的直線l交拋物線C與A、B兩點(diǎn),以F為圓心的圓F與直線AD相切,試判斷圓F與直線BD的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.集合M={-1,0,1},N={x∈Z|-1<x<1},則M∩N等于(  )
A.{-1,0,1}B.{-1}C.{1}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)=x2-6x+5.
(Ⅰ)求$f(-\sqrt{2}),f(a)+f(3)$的值;
(Ⅱ)若x∈[2,6],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.2015年10月十八屆五中全會(huì)決定2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面兩孩政策,為了了解適齡民眾對(duì)放開生育二胎政策的態(tài)度,某市進(jìn)行了一次民意調(diào)查,參與調(diào)查的100位市民中,年齡分布情況如圖所示,并得到適齡民眾對(duì)放開生育二胎政策的態(tài)度數(shù)據(jù)如表:
生二胎不生二胎合計(jì)
25~35歲451055
35~50歲301545
合計(jì)7525100
(1)填寫上面的2×2列聯(lián)表;
(2)根據(jù)調(diào)查數(shù)據(jù),有多少的把握認(rèn)為“生二胎與年齡有關(guān)”,說(shuō)明理由;
(3)調(diào)查對(duì)象中決定生二胎的民眾有六人分別來(lái)自三個(gè)不同的家庭且為父子,各自家庭都有一個(gè)約定:父親先生二胎,然后兒子生二胎,則這個(gè)三個(gè)家庭“二胎出生的日期的先后順序”有多少種?
參考數(shù)據(jù):
 P(K2>k) 0.15 0.10 0.05 0.010
 k2.072 2.076 3.841 6.635
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知直線m,n和平面α,如果n?α,那么“m⊥n”是“m⊥α”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案